-
摘要:
携带角动量的矢量光场在微粒操控、光通信与显示、光学信息加密、高维量子信息处理等领域具有广阔应用。然而,传统的方法实现矢量光场调控通常需要使用多个级联的光学元件,如螺旋相位板、偏振片、四分之一波片、涡旋波片、空间光调制器等,导致器件体积庞大,不符合未来光子器件集成化的需求。超构表面的快速发展为集成化矢量光场调控器件的实现提供变革性解决方案。本文概述了国内外基于超构表面的矢量光场调控和检测的相关研究进展。在此基础上,系统总结了现阶段超构表面矢量光场在微粒操控、边缘增强成像、全息显示以及机器视觉等领域的应用。最后,我们对全文进行了总结和讨论,并提出超构表面矢量光场所面临的挑战和未来发展方向。
Abstract:The vector light field carrying angular momentum finds wide applications in various fields, such as particle manipulation, optical communication and display, optical information encryption, and high-dimensional quantum information processing. However, the conventional approach to vector light field regulation typically involves a series of cascaded optical elements, such as spiral phase plates, polarizers, quarter wave plates, vortex wave plates, spatial light modulators, etc., resulting in a bulky device that does not meet the requirements for future photonic device integration. The rapid development of metasurfaces offers a transformative solution for realizing integrated meta-devices for vector light field control. In this paper, we summarize the research progress on metasurface-based control and detection of vector light fields. Then, we systematically summarize the current applications of metasurface-based vector light fields in particle manipulation, edge enhancement imaging, holographic display, machine vision, and so on. Finally, we have summarized and discussed the full text as well as the challenges and provided an outlook on this emerging field.
-
Key words:
- metasurface /
- vector field /
- polarization /
- regulation
-
Overview: The vector light field carrying angular momentum finds wide applications in various fields such as particle manipulation, optical communication and display, optical information encryption, and high-dimensional quantum information processing. However, the conventional approach to vector light field regulation and detection typically involves a series of cascaded optical elements, such as spiral phase plates, polarizers, quarter wave plates, vortex wave plates, spatial light modulators, etc., resulting in a bulky device that does not meet the requirements for future photonic device integration. Metasurfaces, which are subwavelength spatially arrayed nanostructures at an interface, possess the ability to accurately control the abundant physical dimensions of light, including phase, amplitude, wavelength, polarization, and angular momentum. Owning to the unprecedented wavefront manipulation capacities, metasurfaces have enabled a series of highly compact and efficient meta-devices. The rapid development of metasurfaces also offers a transformative solution for realizing integrated meta-devices for vector light field control. In this paper, we summarize the research progress on metasurface-based control and detection of vector light fields. The basic principle and typical design strategy for vector light field modulation and detection are introduced in detail. For vector light field modulation, we review the principles and methods of generating vortex light field (donut distribution of light field energy) and vector holography (various patterns of light field energy), respectively. For vector light field detection based on metasurfaces, we introduce the development process from angular momentum detection to total Stokes parameters detection. Then, we systematically summarize the current applications of metasurface-based vector light fields in particle manipulation, edge enhancement imaging, holographic display, machine vision, and so on. Finally, we have summarized and discussed the full text as well as the challenges and provided an outlook on this emerging field.
-
图 2 超构表面矢量光束调控国内外研究现状。(a)等离子体超构表面涡旋产生器的SEM图像及测试的远场能量图像[10];(b) J-片的原理工作图,它可以将任意正交偏振对转化为具有独立拓扑电荷值的两束涡旋光[45];(c)基于多原子组合超构表面的完美矢量涡旋光束[53];(d)宽带完美庞加莱球矢量光束的产生[54];(e)动态调控的杂交嫁接完美矢量涡旋光[55];(f)基于四元体超构表面的涡旋光束产生[56];(g)基于纳米环形孔径单元的片上无干扰角动量复用器原理图[59];(h) 硅基OAM片上发射器的原理图[60];(i)光纤端面产生任意结构光束的示意图[3]
Figure 2. Current researches on metasurface vector beam regulation. (a) SEM image of the plasmonic vortex beam generator and the measured far-field intensity profiles[10]; (b) Schematic and operating concept of the J-plate that converts an arbitrary pair of orthogonal polarization states into two beams with independent values of topological charges[45]; (c) Generation of perfect vector vortex beams with various topological charges via a composite element metasurface[53]; (d) Schematic of generating broadband perfect Poincaré sphere vector beams[54]; (e) Dynamic generation of hybrid grafted perfect vector vortex beams[55]; (f) Schematic of the meta-quadrumer for vortex generation[56]; (g) Schematic of the nano-ring aperture unit for on-chip noninterference AM multiplexing[59]; (h) Schematic of a silicon-based OAM emitter[60]; (i) Schematic of generating arbitrarily structured light on meta-fibers[3]
图 3 超构表面矢量全息国内外研究现状。(a)正交圆偏振切换的超构表面全息[72];(b)三线偏振通道组合的彩色矢量全息展示[74];(c)基于双原子单元超构表面的全偏振矢量全息[75];(d)基于组合几何相位单元的宽带全偏振矢量全息[76];(e)液晶集成的彩色打印和矢量全息双功能器件[77];(f)基于非交错超构表面的三维全偏振矢量全息示意图[78];(g)双波长矢量全息示意图[79];(h) 彩色全偏振矢量全息示意图[80];(i)基于极简超构表面的角动量全息示意图[81]
Figure 3. Current researches on metasurface vectorial holography. (a) Schematic of the orthogonal circularly polarization switchable metasurface hologram[72]; (b) Demonstration of three LP channel multiplexing for vectorial full color holographic display[74]; (c) Full-polarization vector holography based on diatomic metasurfaces[75]; (d) Broadband full-polarization vector holography based on geometric phase metasurfaces[76]; (e) Liquid crystal integrated color printing and vector holographic dual-function meat-devices[77]; (f) Schematic of the 3D full-polarization vectorial holography based on noninterleaved metasurfaces[78]; (g) Illustration of the dual-wavelength vectorial meta-hologram[79]; (h) Schematic of the color full-polarization vectorial hologram[80]; (i) Schematic of the angular momentum holography via a minimalist metasurface[81]
图 4 超构表面矢量光束检测器件研究现状。(a)片上轨道角动量模式检测器的示意图[83];(b)基于等离子体纳米光栅结构的OAM检测器[87];(c)基于自旋-霍尔超光栅结构的奇点检测器[86];(d)自旋解耦合的超构表面实现光学奇点的检测[89];(e)基于超构透镜组合的广义Hartmann-Shack传感器[82];(f) 非交错的手性超构表面矢量光束测定器件示意图[90];(g)全硅超构表面矢量光束测定器件示意图[91]
Figure 4. Current researches on metasurface vectorial beam detection devices. (a) Schematic of an on-chip OAM mode detector[83];(b) Schematic of the OAM detector based on a plamonic grating[87]; (c) Schematic of the singularity detector based on a spin-Hall meta-grating[86]; (d) Schematic of the singularity detector based on a spin-decoupled metasurface[89]; (e) Schematic of the general Hartmann-Shack sensor based on metalenses[82]; (f) Schematic of the vector beam detector based on non-interleaved chiral metasurfaces[90]; (g) Schematic of the vector beam detector based on all-silicon metasurfaces[91]
图 5 超构表面矢量光束应用研究现状。(a)超构表面聚焦涡旋光场光镊示意图[92];(b)基于自旋复用的超构表面明场与边缘成像示意图[96];(c)多通道角动量复用与解复器件示意图[97];(d) 柱矢量光束复用通信系统示意图[93];(e)超构表面OAM复用全息示意图[98];(f)高精度模式特征编码的OAM机器学习原理图[100]
Figure 5. Current researches on metasurface vectorial beam applications. (a) Schematic of optical tweezers based on metasurface focusing vortex field[92]; (b) Schematic of the spin-multiplexed metasurface for bright-field imaging and edge-enhanced contrast imaging[96]; (c) Schematic of the multi-channel AM multiplexer/demultiplexer[97]; (d) Schematic of the cylindrical vectorial beam multiplexing communication system[93]; (e) Schematic of the metasurface OAM-multiplexed holography[98]; (f) Schematic of OAM-mediated machine learning for high-accuracy mode-feature encoding[100]
-
[1] Hao J M, Yuan Y, Ran L X, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials[J]. Phys Rev Lett, 2007, 99(6): 063908. doi: 10.1103/PhysRevLett.99.063908
[2] Cao G T, Xu H X, Zhou L M, et al. Infrared metasurface-enabled compact polarization nanodevices[J]. Mater Today, 2021, 50: 499−515. doi: 10.1016/j.mattod.2021.06.014
[3] Li C H, Wieduwilt T, Wendisch F J, et al. Metafiber transforming arbitrarily structured light[J]. Nat Commun, 2023, 14(1): 7222. doi: 10.1038/s41467-023-43068-7
[4] Li X P, Venugopalan P, Ren H R, et al. Super-resolved pure-transverse focal fields with an enhanced energy density through focus of an azimuthally polarized first-order vortex beam[J]. Opt Lett, 2014, 39(20): 5961−5964. doi: 10.1364/OL.39.005961
[5] Choi Y, Yoon C, Kim M, et al. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber[J]. Phys Rev Lett, 2012, 109(20): 203901. doi: 10.1103/PhysRevLett.109.203901
[6] Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313−316. doi: 10.1038/35085529
[7] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nat Photonics, 2012, 6(7): 488−496. doi: 10.1038/nphoton.2012.138
[8] Erhard M, Fickler R, Krenn M, et al. Twisted photons: new quantum perspectives in high dimensions[J]. Light Sci Appl, 2018, 7: 17146. doi: 10.1038/lsa.2017.146
[9] Bégin J L, Jain A, Parks A, et al. Nonlinear helical dichroism in chiral and achiral molecules[J]. Nat Photonics, 2023, 17(1): 82−88. doi: 10.1038/s41566-022-01100-0
[10] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333−337. doi: 10.1126/science.1210713
[11] Dorrah A H, Capasso F. Tunable structured light with flat optics[J]. Science, 2022, 376(6591): eabi6860. doi: 10.1126/science.abi6860
[12] Xiong B, Liu Y, Xu Y H, et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise[J]. Science, 2023, 379(6629): 294−299. doi: 10.1126/science.ade5140
[13] Yang H, Ou K, Wan HY, et al. Metasurface-empowered optical cryptography[J]. Mater Today, 2023, 67: 424−445. doi: 10.1016/j.mattod.2023.06.003
[14] Yang Y, Seong J, Choi M, et al. Integrated metasurfaces for re-envisioning a near-future disruptive optical platform[J]. Light Sci Appl, 2023, 12(1): 152. doi: 10.1038/s41377-023-01169-4
[15] 许可, 王星儿, 范旭浩, 等. 超表面全息术: 从概念到实现[J]. 光电工程, 2022, 49(10): 220183. doi: 10.12086/oee.2022.220183
Xu K, Wang X E, Fan X H, et al. Meta-holography: from concept to realization[J]. Opto-Electron Eng, 2022, 49(10): 220183. doi: 10.12086/oee.2022.220183
[16] Sun S L, Yang K Y, Wang C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Lett, 2012, 12(12): 6223−6229. doi: 10.1021/nl3032668
[17] Hu Y Q, Luo X H, Chen Y Q, et al. 3D-Integrated metasurfaces for full-colour holography[J]. Light Sci Appl, 2019, 8: 86. doi: 10.1038/s41377-019-0198-y
[18] Zheng G X, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nat Nanotechnol, 2015, 10(4): 308−312. doi: 10.1038/nnano.2015.2
[19] Zheng P X, Dai Q, Li Z L, et al. Metasurface-based key for computational imaging encryption[J]. Sci Adv, 2021, 7(21): eabg0363. doi: 10.1126/sciadv.abg0363
[20] Defienne H, Ndagano B, Lyons A, et al. Polarization entanglement-enabled quantum holography[J]. Nat Phys, 2021, 17(5): 591−597. doi: 10.1038/s41567-020-01156-1
[21] Qu G Y, Yang W H, Song Q H, et al. Reprogrammable meta-hologram for optical encryption[J]. Nat Commun, 2020, 11(1): 5484. doi: 10.1038/s41467-020-19312-9
[22] Zhao R Z, Huang L L, Wang Y T. Recent advances in multi-dimensional metasurfaces holographic technologies[J]. PhotoniX, 2020, 1(1): 20. doi: 10.1186/s43074-020-00020-y
[23] Yin X B, Ye Z L, Rho J, et al. Photonic spin Hall effect at metasurfaces[J]. Science, 2013, 339(6126): 1405−1407. doi: 10.1126/science.1231758
[24] Xiao S Y, Zhong F, Liu H, et al. Flexible coherent control of plasmonic spin-Hall effect[J]. Nat Commun, 2015, 6: 8360. doi: 10.1038/ncomms9360
[25] Ou K, Yu F L, Li G H, et al. Mid-infrared polarization-controlled broadband achromatic metadevice[J]. Sci Adv, 2020, 6(37): eabc0711. doi: 10.1126/sciadv.abc0711
[26] Hu Y Q, Jiang Y T, Zhang Y, et al. Asymptotic dispersion engineering for ultra-broadband meta-optics[J]. Nat Commun, 2023, 14(1): 6649. doi: 10.1038/s41467-023-42268-5
[27] Rubin N A, D’Aversa G, Chevalier P, et al. Matrix Fourier optics enables a compact full-Stokes polarization camera[J]. Science, 2019, 365(6448): eaax1839. doi: 10.1126/science.aax1839
[28] Wang Y J, Chen Q M, Yang W H, et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window[J]. Nat Commun, 2021, 12(1): 5560. doi: 10.1038/s41467-021-25797-9
[29] Xie L Y, Wan H Y, Ou K, et al. High‐efficiency broadband achromatic metadevice for spin‐to‐orbital angular momentum conversion of light in the near-infrared[J]. Small Sci, 2024, 4(5): 2300273. doi: 10.1002/smsc.202300273
[30] Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nat Nanotechnol, 2015, 10(11): 937−943. doi: 10.1038/nnano.2015.186
[31] Yang H, Xie Z W, Zhou Z Y, et al. Full-space polarization-regulated lightwave steering via single-layer metasurfaces[J]. J Phys D Appl Phys, 2020, 54(1): 015102. doi: 10.1088/1361-6463/abb7b8
[32] Yu N F, Aieta F, Genevet P, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Lett, 2012, 12(12): 6328−6333. doi: 10.1021/nl303445u
[33] Hu Y Q, Wang X D, Luo X H, et al. All-dielectric metasurfaces for polarization manipulation: principles and emerging applications[J]. Nanophotonics, 2020, 9(12): 3755−3780. doi: 10.1515/nanoph-2020-0220
[34] Wen D D, Pan K, Meng J J, et al. Broadband multichannel cylindrical vector beam generation by a single metasurface[J]. Laser Photon Rev, 2022, 16(10): 2200206. doi: 10.1002/lpor.202200206
[35] Shen Y J, Wang X J, Xie Z W, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light Sci Appl, 2019, 8: 90. doi: 10.1038/s41377-019-0194-2
[36] Wang H T, Wang H, Ruan Q F, et al. Coloured vortex beams with incoherent white light illumination[J]. Nat Nanotechnol, 2023, 18(3): 264−272. doi: 10.1038/s41565-023-01319-0
[37] Yang H, Xie Z W, He H R, et al. A perspective on twisted light from on-chip devices[J]. APL Photonics, 2021, 6(11): 110901. doi: 10.1063/5.0060736
[38] 张雪妍, 郁步昭, 王吉明, 等. 基于几何相位超表面的Ince-Gaussian矢量涡旋光场聚焦[J]. 激光技术, 2022, 46(1): 85−93. doi: 10.7510/jgjs.issn.1001-3806.2022.01.008
Zhang X Y, Yu B Z, Wang J M, et al. Focusing of Ince-Gaussian vector vortex optical field based on geometric phase metasurface[J]. Laser Technol, 2022, 46(1): 85−93. doi: 10.7510/jgjs.issn.1001-3806.2022.01.008
[39] Azzam R M A, Bashara N M. Ellipsometry and Polarized Light[M]. Amsterdam: North-Holland Pub. Co. , 1977.
[40] Milione G, Sztul H I, Nolan D A, et al. Higher-order poincaré sphere, stokes parameters, and the angular momentum of light[J]. Phys Rev Lett, 2011, 107(5): 053601. doi: 10.1103/PhysRevLett.107.053601
[41] Naidoo D, Roux F S, Dudley A, et al. Controlled generation of higher-order Poincaré sphere beams from a laser[J]. Nat Photonics, 2016, 10(5): 327−332. doi: 10.1038/nphoton.2016.37
[42] Xu R, Chen P, Tang J, et al. Perfect higher-order poincaré sphere beams from digitalized geometric phases[J]. Phys Rev Appl, 2018, 10(3): 034061. doi: 10.1103/PhysRevApplied.10.034061
[43] Huang L L, Song X, Reineke B, et al. Volumetric generation of optical vortices with metasurfaces[J]. ACS Photonics, 2017, 4(2): 338−346. doi: 10.1021/acsphotonics.6b00808
[44] Wang X W, Nie Z Q, Liang Y, et al. Recent advances on optical vortex generation[J]. Nanophotonics, 2018, 7(9): 1533−1556. doi: 10.1515/nanoph-2018-0072
[45] Devlin R C, Ambrosio A, Rubin N A, et al. Arbitrary spin-to–orbital angular momentum conversion of light[J]. Science, 2017, 358(6365): 896−901. doi: 10.1126/science.aao5392
[46] Yang Y M, Wang W Y, Moitra P, et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation[J]. Nano Lett, 2014, 14(3): 1394−1399. doi: 10.1021/nl4044482
[47] Pu M B, Li X, Ma X L, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Sci Adv, 2015, 1(9): e1500396. doi: 10.1126/sciadv.1500396
[48] Luo X G, Pu M B, Li X, et al. Broadband spin Hall effect of light in single nanoapertures[J]. Light Sci Appl, 2017, 6(6): e16276. doi: 10.1038/lsa.2016.276
[49] Zhang F, Pu M B, Li X, et al. Extreme‐angle silicon infrared optics enabled by streamlined surfaces[J]. Adv Mater, 2021, 33(11): 2008157. doi: 10.1002/adma.202008157
[50] Zhang X H, Chen Q M, Tang D L, et al. Broadband high-efficiency dielectric metalenses based on quasi-continuous nanostrips[J]. Opto-Electron Adv, 2024, 7(5): 230126. doi: 10.29026/oea.2024.230126
[51] Guo Y H, Pu M B, Zhao Z Y, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022−2029. doi: 10.1021/acsphotonics.6b00564
[52] Zhang F, Pu M B, Luo J, et al. Symmetry breaking of photonic spin-orbit interactions in metasurfaces[J]. Opto-Electron Eng, 2017, 44(3): 319−325. doi: 10.3969/j.issn.1003-501X.2017.03.006
[53] Bao Y J, Ni J C, Qiu C W. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams[J]. Adv Mater, 2020, 32(6): 1905659. doi: 10.1002/adma.201905659
[54] Liu M Z, Huo P C, Zhu W Q, et al. Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface[J]. Nat Commun, 2021, 12(1): 2230. doi: 10.1038/s41467-021-22462-z
[55] Ahmed H, Ansari M A, Li Y, et al. Dynamic control of hybrid grafted perfect vector vortex beams[J]. Nat Commun, 2023, 14(1): 3915. doi: 10.1038/s41467-023-39599-8
[56] Chen Q M, Qu G Y, Yin J, et al. Highly efficient vortex generation at the nanoscale[J]. Nat Nanotechnol, 2024, 19(7): 1000−1006. doi: 10.1038/s41565-024-01636-y
[57] Chen C F, Ku C T, Tai Y H, et al. Creating optical near-field orbital angular momentum in a gold metasurface[J]. Nano Lett, 2015, 15(4): 2746−2750. doi: 10.1021/acs.nanolett.5b00601
[58] Liu A P, Zou C L, Ren X F, et al. On-chip generation and control of the vortex beam[J]. Appl Phys Lett, 2016, 108(18): 181103. doi: 10.1063/1.4948519
[59] Ren H R, Li X P, Zhang Q M, et al. On-chip noninterference angular momentum multiplexing of broadband light[J]. Science, 2016, 352(6287): 805−809. doi: 10.1126/science.aaf1112
[60] Xie Z W, Lei T, Li F, et al. Ultra-broadband on-chip twisted light emitter for optical communications[J]. Light Sci Appl, 2018, 7: 18001. doi: 10.1038/lsa.2018.1
[61] Zhou N, Zheng S, Cao X P, et al. Ultra-compact broadband polarization diversity orbital angular momentum generator with 3.6× 3.6 μm2 footprint[J]. Sci Adv, 2019, 5(5): eaau9593. doi: 10.1126/sciadv.aau9593
[62] Ji J T, Wang Z Z, Sun J C, et al. Metasurface-enabled on-chip manipulation of higher-order poincaré sphere beams[J]. Nano Lett, 2023, 23(7): 2750−2757. doi: 10.1021/acs.nanolett.3c00021
[63] Dorrah A H, Rubin N A, Tamagnone M, et al. Structuring total angular momentum of light along the propagation direction with polarization-controlled meta-optics[J]. Nat Commun, 2021, 12: 6249. doi: 10.1038/s41467-021-26253-4
[64] Buono W T, Forbes A. Nonlinear optics with structured light[J]. Opto-Electron Adv, 2022, 5(6): 210174. doi: 10.29026/oea.2022.210174
[65] Luo X G, Pu M B, Zhang F, et al. Vector optical field manipulation via structural functional materials: tutorial[J]. J Appl Phys, 2022, 131(18): 181101. doi: 10.1063/5.0089859
[66] Nan T, Zhao H, Guo J Y, et al. Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces[J]. Opto-Electron Sci, 2024, 3(5): 230052 doi: 10.29026/oes.2024.230052
[67] Song Q H, Liu X S, Qiu C W, et al. Vectorial metasurface holography[J]. Appl Phys Rev, 2022, 9(1): 011311. doi: 10.1063/5.0078610
[68] Zhao R Z, Sain B, Wei Q S, et al. Multichannel vectorial holographic display and encryption[J]. Light Sci Appl, 2018, 7: 95. doi: 10.1038/s41377-018-0091-0
[69] Rubin N A, Zaidi A, Dorrah A H, et al. Jones matrix holography with metasurfaces[J]. Sci Adv, 2021, 7(33): eabg7488. doi: 10.1126/sciadv.abg7488
[70] Ding F, Chang B D, Wei Q S, et al. Versatile polarization generation and manipulation using dielectric metasurfaces[J]. Laser Photon Rev, 2020, 14(11): 2000116. doi: 10.1002/lpor.202000116
[71] Bao Y J, Wen L, Chen Q, et al. Toward the capacity limit of 2D planar Jones matrix with a single-layer metasurface[J]. Sci Adv, 2021, 7(25): eabh0365. doi: 10.1126/sciadv.abh0365
[72] Mueller J P B, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Phys Rev Lett, 2017, 118(11): 113901. doi: 10.1103/PhysRevLett.118.113901
[73] Deng Z L, Tu Q A, Wang Y J, et al. Vectorial compound metapixels for arbitrary nonorthogonal polarization steganography[J]. Adv Mater, 2021, 33(43): 2103472. doi: 10.1002/adma.202103472
[74] Hu Y Q, Li L, Wang Y J, et al. Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface[J]. Nano Lett, 2020, 20(2): 994−1002. doi: 10.1021/acs.nanolett.9b04107
[75] Deng Z L, Deng J H, Zhuang X, et al. Diatomic metasurface for vectorial holography[J]. Nano Lett, 2018, 18(5): 2885−2892. doi: 10.1021/acs.nanolett.8b00047
[76] Song Q H, Baroni A, Sawant R, et al. Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces[J]. Nat Commun, 2020, 11(1): 2651. doi: 10.1038/s41467-020-16437-9
[77] Kim I, Jang J, Kim G, et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform[J]. Nat Commun, 2021, 12(1): 3614. doi: 10.1038/s41467-021-23814-5
[78] Yang H, Jiang Y T, Hu Y Q, et al. Noninterleaved metasurface for full‐polarization three‐dimensional vectorial holography[J]. Laser Photon Rev, 2022, 16(11): 2200351. doi: 10.1002/lpor.202200351
[79] Kim J, Jeon D, Seong J, et al. Photonic encryption platform via dual-band vectorial metaholograms in the ultraviolet and visible[J]. ACS Nano, 2022, 16(3): 3546−3553. doi: 10.1021/acsnano.1c10100
[80] Guo X Y, Zhong J Z, Li B J, et al. Full‐color holographic display and encryption with full‐polarization degree of freedom[J]. Adv Mater, 2022, 34(3): 2103192. doi: 10.1002/adma.202103192
[81] Yang H, He P, Ou K, et al. Angular momentum holography via a minimalist metasurface for optical nested encryption[J]. Light Sci Appl, 2023, 12(1): 79. doi: 10.1038/s41377-023-01125-2
[82] Yang Z Y, Wang Z K, Wang Y X, et al. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling[J]. Nat Commun, 2018, 9(1): 4607. doi: 10.1038/s41467-018-07056-6
[83] Mei S T, Huang K, Liu H, et al. On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits[J]. Nanoscale, 2016, 8(4): 2227−2233. doi: 10.1039/C5NR07374J
[84] Ou K, Li G H, Li T X, et al. High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces[J]. Nanoscale, 2018, 10(40): 19154−19161. doi: 10.1039/C8NR07480A
[85] Zhang S, Huo P C, Zhu W Q, et al. Broadband detection of multiple spin and orbital angular momenta via dielectric metasurface[J]. Laser Photon Rev, 2020, 14(9): 2000062. doi: 10.1002/lpor.202000062
[86] Feng F, Si G Y, Min C J, et al. On-chip plasmonic spin-Hall nanograting for simultaneously detecting phase and polarization singularities[J]. Light Sci Appl, 2020, 9: 95. doi: 10.1038/s41377-020-0330-z
[87] Chen J, Chen X, Li T, et al. On‐chip detection of orbital angular momentum beam by plasmonic nanogratings[J]. Laser Photon Rev, 2018, 12(8): 1700331. doi: 10.1002/lpor.201700331
[88] Guo Y H, Zhang S C, Pu M B, et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation[J]. Light Sci Appl, 2021, 10(1): 63. doi: 10.1038/s41377-021-00497-7
[89] Li X Y, Chen C, Guo Y H, et al. Monolithic spiral metalens for ultrahigh‐capacity and single‐shot sorting of full angular momentum state[J]. Adv Funct Mater, 2024, 34(7): 2311286. doi: 10.1002/adfm.202311286
[90] Chen C, Xiao X J, Ye X, et al. Neural network assisted high-spatial-resolution polarimetry with non-interleaved chiral metasurfaces[J]. Light Sci Appl, 2023, 12(1): 288. doi: 10.1038/s41377-023-01337-6
[91] Yang H, Xie Z W, Li G H, et al. All-dielectric metasurface for fully resolving arbitrary beams on a higher-order Poincaré sphere[J]. Photonics Res, 2021, 9(3): 331−343. doi: 10.1364/PRJ.411503
[92] Chantakit T, Schlickriede C, Sain B, et al. All-dielectric silicon metalens for two-dimensional particle manipulation in optical tweezers[J]. Photonics Res, 2020, 8(9): 1435−1440. doi: 10.1364/PRJ.389200
[93] Fang J C, Xie Z W, Lei T, et al. Spin-dependent optical geometric transformation for cylindrical vector beam multiplexing communication[J]. ACS Photonics, 2018, 5(9): 3478−3484. doi: 10.1021/acsphotonics.8b00680
[94] Kim Y, Lee G Y, Sung J, et al. Spiral metalens for phase contrast imaging[J]. Adv Funct Mater, 2022, 32(5): 2106050. doi: 10.1002/adfm.202106050
[95] Zhao H, Quan B G, Wang X K, et al. Demonstration of orbital angular momentum multiplexing and demultiplexing based on a metasurface in the terahertz band[J]. ACS Photonics, 2018, 5(5): 1726−1732. doi: 10.1021/acsphotonics.7b01149
[96] Huo P C, Zhang C, Zhu W Q, et al. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging[J]. Nano Lett, 2020, 20(4): 2791−2798. doi: 10.1021/acs.nanolett.0c00471
[97] Li Y, Li X, Chen L W, et al. Orbital angular momentum multiplexing and demultiplexing by a single metasurface[J]. Adv Opt Mater, 2017, 5(2): 1600502. doi: 10.1002/adom.201600502
[98] Ren H R, Briere G, Fang X Y, et al. Metasurface orbital angular momentum holography[J]. Nat Commun, 2019, 10(1): 2986. doi: 10.1038/s41467-019-11030-1
[99] Ren H R, Fang X Y, Jang J, et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space[J]. Nat Nanotechnol, 2020, 15(11): 948−955. doi: 10.1038/s41565-020-0768-4
[100] Fang X Y, Hu X N, Li B L, et al. Orbital angular momentum-mediated machine learning for high-accuracy mode-feature encoding[J]. Light Sci Appl, 2024, 13(1): 49. doi: 10.1038/s41377-024-01386-5
[101] Han Z L, Frydendahl C, Mazurski N, et al. MEMS cantilever–controlled plasmonic colors for sustainable optical displays[J]. Sci Adv, 2022, 8(16): eabn0889. doi: 10.1126/sciadv.abn0889
[102] Ahmed R, Butt H. Strain‐multiplex metalens array for tunable focusing and imaging[J]. Adv Sci, 2021, 8(4): 2003394. doi: 10.1002/advs.202003394
[103] Shaltout A M, Shalaev V M, Brongersma M L. Spatiotemporal light control with active metasurfaces[J]. Science, 2019, 364(6441): eaat3100. doi: 10.1126/science.aat3100
[104] Yu P, Li J X, Liu N. Electrically tunable optical metasurfaces for dynamic polarization conversion[J]. Nano Lett, 2021, 21(15): 6690−6695. doi: 10.1021/acs.nanolett.1c02318
[105] Jung C, Kim G, Jeong M, et al. Metasurface-driven optically variable devices[J]. Chem Rev, 2021, 121(21): 13013−13050. doi: 10.1021/acs.chemrev.1c00294
[106] Shang X J, Xu L, Yang H, et al. Graphene-enabled reconfigurable terahertz wavefront modulator based on complete Fermi level modulated phase[J]. New J Phys, 2020, 22: 063054. doi: 10.1088/1367-2630/ab9428
[107] Fei Z, Rodin A S, Andreev G O, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging[J]. Nature, 2012, 487(7405): 82−85. doi: 10.1038/nature11253
[108] Rajabalipanah H, Rouhi K, Abdolali A, et al. Real-time terahertz meta-cryptography using polarization-multiplexed graphene-based computer-generated holograms[J]. Nanophotonics, 2020, 9(9): 2861−2877. doi: 10.1515/nanoph-2020-0110
[109] Han S J, Kim S, Kim S, et al. Complete complex amplitude modulation with electronically tunable graphene plasmonic metamolecules[J]. ACS Nano, 2020, 14(1): 1166−1175. doi: 10.1021/acsnano.9b09277
[110] de Galarreta C R, Alexeev A M, Au Y Y, et al. Nonvolatile reconfigurable phase‐change metadevices for beam steering in the near infrared[J]. Adv Funct Mater, 2018, 28(10): 1704993. doi: 10.1002/adfm.201704993
[111] Liu H L, Dong W L, Wang H, et al. Rewritable color nanoprints in antimony trisulfide films[J]. Sci adv, 2020, 6(51): eabb7171. doi: 10.1126/sciadv.abb7171
[112] Zhang F, Xie X, Pu M B, et al. Multistate switching of photonic angular momentum coupling in phase‐change metadevices[J]. Adv Mater, 2020, 32(39): 1908194. doi: 10.1002/adma.201908194
[113] Xu Z Q, Luo H, Zhu H Z, et al. Nonvolatile optically reconfigurable radiative metasurface with visible tunability for anticounterfeiting[J]. Nano Lett, 2021, 21(12): 5269−5276. doi: 10.1021/acs.nanolett.1c01396
[114] Yang H, Xie Z W, He H R, et al. Switchable imaging between edge-enhanced and bright-field based on a phase-change metasurface[J]. Opt Lett, 2021, 46(15): 3741−3744. doi: 10.1364/OL.428870
[115] Hu Y Q, Ou X N, Zeng T B, et al. Electrically tunable multifunctional polarization-dependent metasurfaces integrated with liquid crystals in the visible region[J]. Nano Lett, 2021, 21(11): 4554−4562. doi: 10.1021/acs.nanolett.1c00104
[116] Li J X, Yu P, Zhang S, et al. Electrically-controlled digital metasurface device for light projection displays[J]. Nat Commun, 2020, 11(1): 3574. doi: 10.1038/s41467-020-17390-3
[117] Li S Q, Xu X W, Veetil R M, et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface[J]. Science, 2019, 364(6445): 1087−1090. doi: 10.1126/science.aaw6747
[118] Michel A K U, Heßler A, Meyer S, et al. Advanced optical programming of individual meta‐atoms beyond the effective medium approach[J]. Adv Mater, 2019, 31(29): 1901033. doi: 10.1002/adma.201901033
[119] Li L L, Jun Cui T, Ji W, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nat Commun, 2017, 8(1): 197. doi: 10.1038/s41467-017-00164-9
[120] Ma W, Liu Z C, Kudyshev Z A, et al. Deep learning for the design of photonic structures[J]. Nat Photonics, 2021, 15(2): 77−90. doi: 10.1038/s41566-020-0685-y
[121] Molesky S, Lin Z, Piggott A Y, et al. Inverse design in nanophotonics[J]. Nat Photonics, 2018, 12(11): 659−670. doi: 10.1038/s41566-018-0246-9
[122] Xu M F, He Q, Pu M B, et al. Emerging long‐range order from a freeform disordered metasurface[J]. Adv Mater, 2022, 34(12): 2108709. doi: 10.1002/adma.202108709
[123] Luo X H, Hu Y Q, Ou X N, et al. Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible[J]. Light Sci Appl, 2022, 11(1): 158. doi: 10.1038/s41377-022-00844-2
[124] Zheng H Y, Zhou Y, Ugwu C F, et al. Large-scale metasurfaces based on grayscale nanosphere lithography[J]. ACS Photonics, 2021, 8(6): 1824−1831. doi: 10.1021/acsphotonics.1c00424
[125] Chen Y Q, Shu Z W, Zhang S, et al. Sub-10 nm fabrication: methods and applications[J]. Int J Extrem Manuf, 2021, 3(3): 032002. doi: 10.1088/2631-7990/ac087c
[126] Lu X L, Wang X J, Wang S S, et al. Polarization-directed growth of spiral nanostructures by laser direct writing with vector beams[J]. Nat Commun, 2023, 14(1): 1422. doi: 10.1038/s41467-023-37048-0