片上光学近场的远场辐射调控

陈宜臻,潘威康,金相宇,等. 片上光学近场的远场辐射调控[J]. 光电工程,2023,50(8): 230173. doi: 10.12086/oee.2023.230173
引用本文: 陈宜臻,潘威康,金相宇,等. 片上光学近场的远场辐射调控[J]. 光电工程,2023,50(8): 230173. doi: 10.12086/oee.2023.230173
Chen Y Z, Pan W K, Jin X Y, et al. Far-field radiation manipulations of on-chip optical near-fields[J]. Opto-Electron Eng, 2023, 50(8): 230173. doi: 10.12086/oee.2023.230173
Citation: Chen Y Z, Pan W K, Jin X Y, et al. Far-field radiation manipulations of on-chip optical near-fields[J]. Opto-Electron Eng, 2023, 50(8): 230173. doi: 10.12086/oee.2023.230173

片上光学近场的远场辐射调控

  • 基金项目:
    国家重点研发计划 (2020YFA0710100, 2022YFA1404700);国家自然科学基金项目(12221004, 62192771, 62005197);上海市科技创新行动计划 (20JC1414601)
详细信息
    作者简介:
    通讯作者: 孙树林,sls@fudan.edu.cn
  • 中图分类号: O436

Far-field radiation manipulations of on-chip optical near-fields

  • Fund Project: Project supported by National Key Research and Development Program of China (2020YFA0710100, 2022YFA1404700), National Natural Science Foundation of China (12221004, 62192771, 62005197), and Shanghai Science and Technology Committee (20JC1414601)
More Information
  • 表面波作为一种信息或能量传递载体,在片上光学器件及系统中具有重要应用,然而实现近场表面波到远场传输波的高效自由调控是片上光子学领域中的基础难题。本文从表面波的远场辐射原理出发,介绍了人们利用超表面对表面波辐射场的相位、振幅、偏振态等多种参量的调控能力,以及表面波的定向辐射、远场聚焦、特殊光束激发、全息成像等复杂波前调控效应,最后对表面波远场辐射调控的主要挑战和未来发展做了总结。

  • Overview: Surface waves (SWs), including surface plasmon polaritons (SPPs) and their equivalent counterparts such as spoof SPPs and guided SWs, are a kind of eigen electromagnetic modes localized at the surface of the metal or artificial structure. As the information or energy carrier, SWs can find numerous applications in integration-optics. On the other hand, achieving freely tailored far-field radiations from SWs has also attracted much attention from science and technology. However, due to the momentum mismatch issue between SWs and free-space propagating waves (PWs), a long-standing issue is to find appropriate approaches to efficiently link these different electromagnetic modes.

    One early representative device for radiation control of SWs is the leaky wave antenna (LWA), which can help people realize the directional radiation and the beam scanning of microwave radar signals. The travelling waves inside a waveguide of the LWA can be gradually radiated to the desired direction after suffering from some periodic Bragg modulations. Besides, people have also proposed to fabricate periodic textures surrounding a small aperture in a metal film to collimate the transmission light beam emerges from the aperture. Based on a similar concept, more intriguing effects of SW-PW radiation are also achieved, including far-field focusing, Airy beam, vortex beam generation, and so on. However, these Bragg devices still suffer from the issues of low efficiency, large size, and lack of degrees of freedom.

    Recently, the two-dimensional metasurfaces, i.e., a kind of ultrathin metamaterial constructed by planar meta-atoms with the predetermined electromagnetic wave properties, have been proposed as the high-efficiency, high-integration, and multi-function platforms for freely modulating the near- to far- field radiations. Excited by the impinging SWs, a series of carefully designed meta-atoms can serve as the sub-sources and radiate the far-field PWs with freely tailored amplitudes, phases, as well as polarizations. Based on the interference effect, such metasurfaces can thus construct the arbitrary scattering far-field patterns in deep subwavelength scale, including the directional far-field radiation, focusing, holograms, vortex/vectorial beam generations, and so on. Moreover, new degrees of freedom, such as the incident directions of SWs and the far-field polarizations of radiated PWs, can be further utilized to implement more functionalities in the single meta-device. Such meta-devices, featured by mini-size, easy-integration, and high-performance, are highly desired in future integration-optics applications, e.g., leaky antenna, virtual reality imaging, and micro projector.

  • 加载中
  • 图 1  不同的表面波远场辐射调控原理[18]。(a)光栅耦合器;(b)梯度相位超表面

    Figure 1.  Different principles for far-field radiation manipulations of surface wave [18]. (a) Grating couplers; (b) Gradient phase metasurfaces

    图 2  光栅耦合器实现表面波的远场定向辐射。(a) “Bull’s eye”光栅实现异常透射光的定向辐射[19];(b)表面光栅实现远场聚焦[23];(c)金属狭缝光栅实现艾里光束辐射[24]

    Figure 2.  Far-field directional radiation of surface wave by grating coupler. (a) Directional radiation of the extraordinary optical transmission light by the "Bull's eye" grating[19]; (b) Far-field focusing of the surface wave via surface grating[23]; (c) Airy-beam radiation via metal-slit grating[24]

    图 3  超表面实现表面波的定向远场辐射。(a)微波人工表面等离激元模式的定向辐射[30];(b)基于透射式超表面实现微波段的人工表面等离激元模式的定向辐射 [32];(c)近红外频段介质波导模式的定向辐射[34]

    Figure 3.  Far-field directional radiation of surface wave by metasurface. (a) Directional radiation of microwave spoof surface plasmon mode[30]; (b) Directional radiation of microwave spoof surface plasmon mode based on a transmissive metasurface[32]; (c) Directional radiation of near infrared dielectric waveguide mode [34]

    图 4  表面波的复杂远场波前调控。(a)全息光栅实现表面等离激元激励下的艾里光束和涡旋光束激发[41];(b)共振相位超表面实现介质波导模式的远场全息成像[42];(c)几何相位超表面实现表面等离激元的复杂远场波前调控[18];(d)串联型几何相位超表面实现铌酸锂波导模式的多功能远场全息[43]

    Figure 4.  Complex far-field wavefront manipulations of surface wave. (a) Holographic grating for Airy beam and vortex beam generation excited by surface plasmon[41]; (b) Resonant phase metasurface for far-field holography of the dielectric waveguide mode[42]; (c) Geometric phase metasurface for complex far-field wavefront control of surface plasmon[18]; (d) Multifunctional far-field holography of lithium niobate waveguide mode by a series of geometric phase metasurfaces[43]

    图 5  表面波的多功能复用远场辐射调控。(a)基于二维复合光栅的路径复用双功能远场辐射调控[51];(b)基于复合相位调控的多功能远场全息[57]

    Figure 5.  Multifunctional far-field manipulation of surface wave. (a) Optical path multiplexing dual-functional far-field radiation by two-dimensional composite grating[51]; (b) Multifunctional far-field holography based on composite phase modulation[57]

    图 6  表面波远场矢量光场辐射调控。(a)偏振态可调的辐射远场聚焦[64]; (b)任意矢量涡旋光束激发[65];(c)辐射光场的偏振态调控[66];(d)全参量可调的矢量光场辐射[67]

    Figure 6.  Far-field vectorial optical field manipulation of surface wave. (a) Far-field focusing of far-fields with controllable polarization state[64]; (b) Arbitrary vectorial vortex beam generation[65]; (c) Far-fields radiation with adjustable polarization [66]; (d) Full-parameter controllable vectorial optical field radiation[67]

  • [1]

    Atabaki A H, Moazeni S, Pavanello F, et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip[J]. Nature, 2018, 556(7701): 349−354. doi: 10.1038/s41586-018-0028-z

    [2]

    Barnes W L, Dereux A, Ebbesen T W. Surface Plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824−830. doi: 10.1038/nature01937

    [3]

    Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequency Plasmons in metallic Mesostructures[J]. Phys Rev Lett, 1996, 76(25): 4773−4776. doi: 10.1103/PhysRevLett.76.4773

    [4]

    Shi J J, Li Y, Kang M, et al. Efficient second harmonic generation in a hybrid plasmonic waveguide by mode interactions[J]. Nano Lett, 2019, 19(6): 3838−3845. doi: 10.1021/acs.nanolett.9b01004

    [5]

    Anker J N, Hall W P, Lyandres O, et al. Biosensing with plasmonic nanosensors[J]. Nat Mater, 2008, 7(6): 442−453. doi: 10.1038/nmat2162

    [6]

    Zhang X, Liu Z W. Superlenses to overcome the diffraction limit[J]. Nat Mater, 2008, 7(6): 435−441. doi: 10.1038/nmat2141

    [7]

    Zhang Y Q, Min C J, Dou X J, et al. Plasmonic tweezers: for nanoscale optical trapping and beyond[J]. Light Sci Appl, 2021, 10(1): 59. doi: 10.1038/s41377-021-00474-0

    [8]

    Chen J, Li T, Wang S M, et al. Multiplexed holograms by surface Plasmon propagation and polarized scattering[J]. Nano Lett, 2017, 17(8): 5051−5055. doi: 10.1021/acs.nanolett.7b02295

    [9]

    Sun J, Timurdogan E, Yaacobi A, et al. Large-scale nanophotonic phased array[J]. Nature, 2013, 493(7431): 195−199. doi: 10.1038/nature11727

    [10]

    Jackson D R, Caloz C, Itoh T. Leaky-wave antennas[J]. Proc IEEE, 2012, 100(7): 2194−2206. doi: 10.1109/JPROC.2012.2187410

    [11]

    Monticone F, Alù A. Leaky-wave theory, techniques, and applications: from microwaves to visible frequencies[J]. Proc IEEE, 2015, 103(5): 793−821. doi: 10.1109/JPROC.2015.2399419

    [12]

    Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333−337. doi: 10.1126/science.1210713

    [13]

    Sun S L, He Q, Hao J M, et al. Electromagnetic metasurfaces: physics and applications[J]. Adv Opt Photonics, 2019, 11(2): 380. doi: 10.1364/AOP.11.000380

    [14]

    Meng Y, Chen Y Z, Lu L H, et al. Optical meta-waveguides for integrated photonics and beyond[J]. Light Sci Appl, 2021, 10(1): 235. doi: 10.1038/s41377-021-00655-x

    [15]

    Guan F X, Sun S L, Xiao S Y, et al. Scatterings from surface Plasmons to propagating waves at Plasmonic discontinuities[J]. Sci Bull, 2019, 64(12): 802−807. doi: 10.1016/j.scib.2019.05.003

    [16]

    Guan F X, Sun S L, Ma S J, et al. Transmission/reflection behaviors of surface Plasmons at an interface between two Plasmonic systems[J]. J Phys Condens Matter, 2018, 30(11): 114002. doi: 10.1088/1361-648X/aaad2a

    [17]

    管福鑫, 董少华, 何琼, 等. 表面等离极化激元的散射及波前调控[J]. 物理学报, 2020, 69(15): 157804. doi: 10.7498/aps.69.20200614

    Guan F X, Dong S H, He Q, et al. Scatterings and wavefront manipulations of surface Plasmon polaritons[J]. Acta Phys Sin, 2020, 69(15): 157804. doi: 10.7498/aps.69.20200614

    [18]

    Pan W K, Wang Z, Chen Y Z, et al. High-efficiency generation of far-field spin-polarized wavefronts via designer surface wave metasurfaces[J]. Nanophotonics, 2022, 11(9): 2025−2036. doi: 10.1515/nanoph-2022-0006

    [19]

    Lezec H J, Degiron A, Devaux E, et al. Beaming light from a subwavelength aperture[J]. Science, 2002, 297(5582): 820−822. doi: 10.1126/science.1071895

    [20]

    Yu N F, Fan J, Wang Q J, et al. Small-divergence semiconductor lasers by plasmonic collimation[J]. Nat Photonics, 2008, 2(9): 564−570. doi: 10.1038/nphoton.2008.152

    [21]

    Jun Y C, Huang K C Y, Brongersma M L. Plasmonic beaming and active control over fluorescent emission[J]. Nat Commun, 2011, 2(1): 283. doi: 10.1038/ncomms1286

    [22]

    Martín-Moreno L, García-Vidal F J, Lezec H J, et al. Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations[J]. Phys Rev Lett, 2003, 90(16): 167401. doi: 10.1103/PhysRevLett.90.167401

    [23]

    Kim S, Lim Y, Kim H, et al. Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings[J]. Appl Phys Lett, 2008, 92(1): 013103. doi: 10.1063/1.2828716

    [24]

    Tang X M, Li L, Li T, et al. Converting surface Plasmon to spatial Airy beam by graded grating on metal surface[J]. Opt Lett, 2013, 38(10): 1733−1735. doi: 10.1364/OL.38.001733

    [25]

    Hao F H, Wang R, Wang J. Design and characterization of a micron-focusing plasmonic device[J]. Opt Express, 2010, 18(15): 15741−15746. doi: 10.1364/OE.18.015741

    [26]

    Guan C Y, Ding M, Shi J H, et al. Compact all-fiber plasmonic Airy-like beam generator[J]. Opt Lett, 2014, 39(5): 1113−1116. doi: 10.1364/OL.39.001113

    [27]

    Shi H F, Du C L, Luo X G. Focal length modulation based on a metallic slit surrounded with grooves in curved depths[J]. Appl Phys Lett, 2007, 91(9): 093111. doi: 10.1063/1.2776875

    [28]

    Kumar M S, Piao X, Koo S, et al. Out of plane mode conversion and manipulation of Surface Plasmon Polariton waves[J]. Opt Express, 2010, 18(9): 8800−8805. doi: 10.1364/OE.18.008800

    [29]

    Sun S L, He Q, Xiao S Y, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nat Mater, 2012, 11(5): 426−431. doi: 10.1038/nmat3292

    [30]

    Xu J J, Zhang H C, Zhang Q, et al. Efficient conversion of surface-Plasmon-like modes to spatial radiated modes[J]. Appl Phys Lett, 2015, 106(2): 021102. doi: 10.1063/1.4905580

    [31]

    Kianinejad A, Chen Z N, Qiu C W. A single-layered spoof-Plasmon-mode leaky wave antenna with consistent gain[J]. IEEE Trans Antennas Propag, 2017, 65(2): 681−687. doi: 10.1109/TAP.2016.2633161

    [32]

    Wang D P, Wang G M, Cai T, et al. Planar spoof surface Plasmon Polariton antenna by using transmissive phase gradient metasurface[J]. Ann Phys, 2020, 532(6): 2000008. doi: 10.1002/andp.202000008

    [33]

    Zhu H, Yin X, Chen L, et al. Directional beaming of light from a subwavelength metal slit with phase-gradient metasurfaces[J]. Sci Rep, 2017, 7(1): 12098. doi: 10.1038/s41598-017-09726-9

    [34]

    Guo X X, Ding Y M, Chen X, et al. Molding free-space light with guided wave–driven metasurfaces[J]. Sci Adv, 2020, 6(29): eabb4142. doi: 10.1126/sciadv.abb4142

    [35]

    李涛, 陈绩, 祝世宁. 表面等离激元的传播操控: 从波束调制到近场全息[J]. 激光与光电子学进展, 2017, 54(5): 050002. doi: 10.3788/LOP54.050002

    Li T, Chen J, Zhu S N. Manipulating surface Plasmon propagation: from beam modulation to near-field holography[J]. Laser Optoelectron Prog, 2017, 54(5): 050002. doi: 10.3788/LOP54.050002

    [36]

    Li M, Hagberg M, Bengtsson J, et al. Optical waveguide fan-out elements using dislocated gratings for both outcoupling and phase shifting[J]. IEEE Photonics Technol Lett, 1996, 8(9): 1199−1201. doi: 10.1109/68.531835

    [37]

    Chen Y H, Huang L, Gan L, et al. Wavefront shaping of infrared light through a subwavelength hole[J]. Light Sci Appl, 2012, 1(8): e26. doi: 10.1038/lsa.2012.26

    [38]

    Chen Y H, Fu J X, Li Z Y. Surface wave holography on designing subwavelength metallic structures[J]. Opt Express, 2011, 19(24): 23908−23920. doi: 10.1364/OE.19.023908

    [39]

    Huang Z Q, Marks D L, Smith D R. Out-of-plane computer-generated multicolor waveguide holography[J]. Optica, 2019, 6(2): 119−124. doi: 10.1364/OPTICA.6.000119

    [40]

    Zheng S, Zhao Z Y, Zhang W F. Versatile generation and manipulation of phase-structured light beams using on-chip subwavelength holographic surface gratings[J]. Nanophotonics, 2023, 12(1): 55−70. doi: 10.1515/nanoph-2022-0513

    [41]

    Dolev I, Epstein I, Arie A. Surface-Plasmon holographic beam shaping[J]. Phys Rev Lett, 2012, 109(20): 203903. doi: 10.1103/PhysRevLett.109.203903

    [42]

    Ding Y M, Chen X, Duan Y, et al. Metasurface-dressed two-dimensional on-chip waveguide for free-space light field manipulation[J]. ACS Photonics, 2022, 9(2): 398−404. doi: 10.1021/acsphotonics.1c01577

    [43]

    Fang B, Wang Z Z, Gao S L, et al. Manipulating guided wave radiation with integrated geometric metasurface[J]. Nanophotonics, 2022, 11(9): 1923−1930. doi: 10.1515/nanoph-2021-0466

    [44]

    Xi K L, Fang B, Ding L, et al. Terahertz airy beam generated by Pancharatnam-Berry phases in guided wave-driven metasurfaces[J]. Opt Express, 2022, 30(10): 16699−16711. doi: 10.1364/OE.456699

    [45]

    Bomzon Z, Biener G, Kleiner V, et al. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings[J]. Opt Lett, 2002, 27(13): 1141−1143. doi: 10.1364/OL.27.001141

    [46]

    Guo W L, Wang G M, Hou H S, et al. Multi-functional coding metasurface for dual-band independent electromagnetic wave control[J]. Opt Express, 2019, 27(14): 19196−19211. doi: 10.1364/OE.27.019196

    [47]

    Chen S Q, Liu W W, Li Z C, et al. Metasurface‐empowered optical multiplexing and multifunction[J]. Adv Mater, 2020, 32(3): 1805912. doi: 10.1002/adma.201805912

    [48]

    Zhang L, Wu R Y, Bai G D, et al. Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves[J]. Adv Funct Mater, 2018, 28(33): 1802205. doi: 10.1002/adfm.201802205

    [49]

    Wu P C, Zhu W M, Shen Z X, et al. Broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface[J]. Adv Opt Mater, 2017, 5(7): 1600938. doi: 10.1002/adom.201600938

    [50]

    Spägele C, Tamagnone M, Kazakov D, et al. Multifunctional wide-angle optics and lasing based on supercell metasurfaces[J]. Nat Commun, 2021, 12(1): 3787. doi: 10.1038/s41467-021-24071-2

    [51]

    Zhou N, Zheng S, Cao X P, et al. Ultra-compact broadband polarization diversity orbital angular momentum generator with 3.6 × 3.6 μm2 footprint[J]. Sci Adv, 2019, 5(5): eaau9593. doi: 10.1126/sciadv.aau9593

    [52]

    Ha Y L, Guo Y H, Pu M B, et al. Monolithic-integrated multiplexed devices based on metasurface-driven guided waves[J]. Adv Theory Simul, 2021, 4(2): 2000239. doi: 10.1002/adts.202000239

    [53]

    Ha Y L, Guo Y H, Pu M B, et al. Minimized two- and four-step varifocal lens based on silicon photonic integrated nanoapertures[J]. Opt Express, 2020, 28(6): 7943−7952. doi: 10.1364/OE.386418

    [54]

    杨睿, 于千茜, 潘一苇, 等. 基于片上超表面的多路方向复用全息术[J]. 光电工程, 2022, 49(10): 220177. doi: 10.12086/oee.2022.220177

    Yang R, Yu Q Q, Pan Y W, et al. Directional-multiplexing holography by on-chip metasurface[J]. Opto-Electron Eng, 2022, 49(10): 220177. doi: 10.12086/oee.2022.220177

    [55]

    Liu Y, Shi Y Y, Wang Z J, et al. On-chip integrated metasystem with inverse-design wavelength Demultiplexing for augmented reality[J]. ACS Photonics, 2023, 10(5): 1268−1274. doi: 10.1021/acsphotonics.2c01823

    [56]

    Fang B, Shu F Z, Wang Z Z, et al. On-chip non-uniform geometric metasurface for multi-channel wavefront manipulations[J]. Opt Lett, 2023, 48(11): 3119−3122. doi: 10.1364/OL.488475

    [57]

    Shi Y Y, Wan C W, Dai C J, et al. Augmented reality enabled by on-chip meta-holography multiplexing[J]. Laser Photonics Rev, 2022, 16(6): 2100638. doi: 10.1002/lpor.202100638

    [58]

    Yang R, Wan S, Shi Y Y, et al. Immersive tuning the guided waves for multifunctional on-chip metaoptics[J]. Laser Photonics Rev, 2022, 16(8): 2200127. doi: 10.1002/lpor.202200127

    [59]

    Shi Y Y, Wan C W, Dai C J, et al. On-chip meta-optics for semi-transparent screen display in sync with AR projection[J]. Optica, 2022, 9(6): 670−676. doi: 10.1364/OPTICA.456463

    [60]

    Zhang C L, Min C J, Du L P, et al. Perfect optical vortex enhanced surface Plasmon excitation for plasmonic structured illumination microscopy imaging[J]. Appl Phys Lett, 2016, 108(20): 201601. doi: 10.1063/1.4948249

    [61]

    Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam[J]. Phys Rev Lett, 2003, 91(23): 233901. doi: 10.1103/PhysRevLett.91.233901

    [62]

    D’Ambrosio V, Nagali E, Walborn S P, et al. Complete experimental toolbox for alignment-free quantum communication[J]. Nat Commun, 2012, 3(1): 961. doi: 10.1038/ncomms1951

    [63]

    Parigi V, D’Ambrosio V, Arnold C, et al. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory[J]. Nat Commun, 2015, 6(1): 7706. doi: 10.1038/ncomms8706

    [64]

    Li L, Li T, Tang X M, et al. Plasmonic polarization generator in well-routed beaming[J]. Light Sci Appl, 2015, 4(9): e330. doi: 10.1038/lsa.2015.103

    [65]

    Ji J T, Wang Z Z, Sun J C, et al. Metasurface-enabled on-chip manipulation of higher-order Poincaré sphere beams[J]. Nano Lett, 2023, 23(7): 2750−2757. doi: 10.1021/acs.nanolett.3c00021

    [66]

    Zhang Y B, Li Z C, Liu W W, et al. On-chip multidimensional manipulation of far-field radiation with guided wave-driven metasurfaces[J]. Laser Photonics Rev, 2023, 17(9): 2300109. doi: 10.1002/lpor.202300109

    [67]

    Huang H Q, Overvig A C, Xu Y, et al. Leaky-wave metasurfaces for integrated photonics[J]. Nat Nanotechnol, 2023, 18(6): 580−588. doi: 10.1038/s41565-023-01360-z

    [68]

    Xu G Y, Overvig A, Kasahara Y, et al. Arbitrary aperture synthesis with nonlocal leaky-wave metasurface antennas[J]. Nat Commun, 2023, 14(1): 4380. doi: 10.1038/s41467-023-39818-2

    [69]

    Luo X G, Ishihara T. Surface Plasmon resonant interference nanolithography technique[J]. Appl Phys Lett, 2004, 84(23): 4780−4782. doi: 10.1063/1.1760221

    [70]

    Guo Y H, Pu M B, Zhao Z Y, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022−2029. doi: 10.1021/acsphotonics.6b00564

    [71]

    Guo Y H, Pu M B, Li X, et al. Chip-integrated geometric metasurface as a novel platform for directional coupling and polarization sorting by spin-orbit interaction[J]. IEEE J Sel Top Quantum Electron, 2018, 24(6): 4700107. doi: 10.1109/jstqe.2018.2814744

    [72]

    Pan W K, Wang Z, Chen Y Z, et al. Efficiently controlling near-field wavefronts via designer metasurfaces[J]. ACS Photonics, 2023, 10(7): 2423−2431. doi: 10.1021/acsphotonics.2c02009

  • 加载中

(7)

计量
  • 文章访问数:  5151
  • PDF下载数:  1062
  • 施引文献:  0
出版历程
收稿日期:  2023-07-16
修回日期:  2023-08-20
录用日期:  2023-08-21
网络出版日期:  2023-09-27
刊出日期:  2023-09-27

目录

/

返回文章
返回