基于超构表面的光谱成像及应用研究进展

万源庆,刘威骏,林若雨,等. 基于超构表面的光谱成像及应用研究进展[J]. 光电工程,2023,50(8): 230139. doi: 10.12086/oee.2023.230139
引用本文: 万源庆,刘威骏,林若雨,等. 基于超构表面的光谱成像及应用研究进展[J]. 光电工程,2023,50(8): 230139. doi: 10.12086/oee.2023.230139
Wan Y Q, Liu W J, Lin R Y, et al. Research progress and applications of spectral imaging based on metasurfaces[J]. Opto-Electron Eng, 2023, 50(8): 230139. doi: 10.12086/oee.2023.230139
Citation: Wan Y Q, Liu W J, Lin R Y, et al. Research progress and applications of spectral imaging based on metasurfaces[J]. Opto-Electron Eng, 2023, 50(8): 230139. doi: 10.12086/oee.2023.230139

基于超构表面的光谱成像及应用研究进展

  • 基金项目:
    国家自然科学基金资助项目(11834007)
详细信息
    作者简介:
    通讯作者: 王漱明,wangshuming@nju.edu.cn
  • 中图分类号: O436; O431.2

Research progress and applications of spectral imaging based on metasurfaces

  • Fund Project: Project supported by the National Natural Science Foundation of China (11834007)
More Information
  • 作为一种将光谱信息和空间信息相结合的技术,光谱成像在科学研究和工程应用中受到了广泛的关注。设计优化具有亚波长尺度特征的超构表面可以对光场进行高效地调制。本文综述了近年来基于超构表面的光谱成像研究进展,与传统光谱仪相比,基于超构表面的紧凑型光谱仪具有体积小和光路较为简单的优点,在小型器件中具有较大的应用潜力。根据不同的成像机理,基于超构表面的光谱成像可以分为超色散型、窄带滤波型和宽带滤波型,本文详细介绍了每种成像机理的研究进展,并随后总结了在实际场景中的应用情况,最后展望了超构表面光谱成像的发展方向和应用前景。

  • Overview: As the inherent characteristics of substances, spectra can be well used to identify the chemical composition of substances. Spectral imaging is a technology that combines spectral information with spatial information, having a wide range of applications in the fields of material analysis, food safety, medical diagnosis and biological imaging. However, traditional spectrometers are usually composed of prisms, gratings and other splitter devices. Limited by the diffraction effect, their spectral resolution is inversely proportional to the optical path. Therefore, they generally have the disadvantages of large size, high cost and complex optical path, and their application in compact devices is limited. Although there have been Fourier transform spectrometer, micro ring resonator and other research related to reducing spectrometer volume, they still have some problems, such as not being able to deal with very irregular spectral signals, spectral resolution is limited by manufacturing technology, , which cannot solve the problem that the spectrometer is difficult to compact.

    The metasurface is a kind of large area nano-structured surface composed of subwavelength small units, characterized by strong plasticity, high flexibility, and easy integration. The optical properties of the metasurface are determined by its micro - nano structure. By designing and optimizing the resonance phase, transmission phase, and geometric phase, metasurfaces can be used to effectively modulate the optical parameters of light on the plane, such as amplitude, phase, and polarization. Due to the excellent electromagnetic properties exhibited by metasurfaces, they can achieve complex functions that are difficult to achieve in conventional refraction and diffraction optics. The spectral imaging technology based on metasurfaces is an emerging optical imaging technology, which can perform high resolution and high sensitivity spectral imaging within micro imaging systems, providing an opportunity for achieving compact spectrometers. In this paper, we firstly discuss the spectral imaging of metasurfaces based on superdispersion, narrowband filtering and broadband filtering. Narrowband filtering includes three filtering methods: transmission type, absorption type and reflection type filtering, while broadband filtering includes two key steps: obtaining randomly distributed spectral curves and using spectral reconstruction algorithm to reconstruct spectrum. Compared with traditional spectrometers, the spectral imaging of metasurfaces based on superdispersion can reduce the volume of optical components to a certain extent, but it is difficult to balance integration and resolution. Narrowband filtering can be used for snapshot spectral cameras, but it has low light utilization and high technological requirements. Broadband filtering has high light utilization and strong spectral resolution, but it relies on spectral reconstruction algorithms, so it requires high algorithm requirements.Then, the recent applications of the spectral imaging based on metasurfaces are introduced, such as biosensing, medical diagnostics, and face recognition. Finally, the development direction and application prospects of the spectral imaging based on metasurfaces are prospected.

  • 加载中
  • 图 1  (a)对称偏转器和非对称偏转器的结构示意图[26];(b)异常反射的实验表征设置和实际拍摄图片[27]

    Figure 1.  (a) Structural schematic diagram of symmetric and asymmetric deflectors[26]; (b) Experimental characterization setup and actual photography of anomalous reflection[27]

    图 2  离轴超构透镜。(a)显示坐标的超构透镜示意图,聚焦线沿x′轴(垂直于聚焦轴)的位移作为波长的函数[28];(b)由超构透镜和CMOS相机组成的紧凑光谱仪[29];(c)像差校正超构透镜和贝里相位透镜的实验表征[30];(d)光谱范围和光谱分辨率与结构参数之间的关系示意图[31]

    Figure 2.  Off-axis meta-lens. (a) Schematic diagram showing the coordinates of the meta-lens, and the displacement of the focal line along the x′-axis (normal to the focal axis) as a function of wavelength[28]; (b) Compact spectrometer composed of meta-lens and CMOS camera[29]; (c) Experimental characterization of the aberration corrected meta-lens and the Berry phase lens[30]; (d) Schematic diagram of the relationship between spectral range, Spectral resolution and structural parameters[31]

    图 3  (a)折叠超构表面示意图[35];(b) SLIM系统中光谱重建算法的数值模拟结果[36] ;(c)高光谱成像系统的光学架构示意图[37];(d)色散实验的装置和实验结果的拼接图[38]

    Figure 3.  (a) Schematic diagram of folded metasurface[35]; (b) Numerical simulation results of spectral reconstruction algorithm in SLIM system[36] ; (c) Schematic of an optical architecture for hyperspectral imaging system[37]; (d) Set up of the dispersion experiment and the splice diagram of experimental results[38]

    图 4  基于透射型超构表面的光谱成像。(a)集成滤波阵列组成的紧凑型光谱仪[44];(b)具有不同纳米柱宽度的一组滤波器模拟透射光谱[46];(c)超构表面快照光谱成像仪的示意图[47];(d)多光谱拼接滤波器生成过程示意图[4];(e)未知源入射功率的目标检测策略框图[48]

    Figure 4.  Spectral imaging based on transmission-type metasurface. (a) Compact spectrometer composed of integrated filter array[44]; (b) Simulated transmission spectra of a group of filters with different nanopillar widths[46]; (c) Schematic diagram of a hypersurface snapshot spectral imager[47]; (d) Schematic diagram of generating process of the multispectral filter mosaic[4]; (e) Block diagram of target detection strategy for unknown source incident power[48]

    图 5  基于吸收型超构表面的光谱成像。(a)多光谱超构材料的三维原理图[61];(b)混合等离子体-焦电装置示意图[63];(c)在共振峰处激发的电场分布[63];(d)多层超构表面吸收器示意图[65]

    Figure 5.  Spectral imaging based on absorption-type metasurface. (a) 3D schematic of the multispectral metamaterial absorber[61]; (b) Schematic diagram of the hybrid plasmonic− pyroelectric detectors[63]; (c) Electric field distributions excited at resonant peaks[63]; (d) Schematic illustration of the multilayer metasurface absorber[65]

    图 6  基于反射型超构表面的光谱成像。(a)导模谐振滤波器的原理图和透射光谱[7];(b)像素化介电超构表面的分子指纹检测[68]

    Figure 6.  Spectral imaging based on reflection-type metasurface. (a) Schematic of the guided-mode resonance filter with gradient grating periods[7]; (b) Molecular fingerprint detection with pixelated dielectric metasurfaces[68]

    图 7  (a)基于光子晶体(PC)板的微型光谱仪[76];(b)光子晶体滤波器和新型滤波器的重建光谱对比图[88];(c)纳米柱的设计和制造图[91];(d)基于超构表面的多光谱和偏振检测原理图[92]

    Figure 7.  (a) Micro-spectrometer based on photonic-crystal (PC) slabs[76]; (b) Comparison of reconstructed spectra of photonic crystal filters and novel filters[88]; (c) Design and fabrication diagram of nanocolumn[91]; (d) Schematic drawing of the metasurface-based multispectral and polarimetric detection[92]

    图 8  调谐型超构表面。(a)基于GSST的相变超构表面光谱调制器[103];(b) MIM结构的横切面图[101];(c) a-GST和c-GST作为介质层时的反射光谱和电场分布[101];(d)电可调谐滤色器示意图[105];(e)石墨烯超构表面调制器原理图[106]

    Figure 8.  Tuned metasurface. (a) Phase-change metasurface spectral modulator based on GSST[103]; (b) Cross-sectional view of the MIM structure[101]; (c) Reflection spectrum and electric field distribution of a-GST and c-GST as dielectric layers[101]; (d) Schematic representation of the electrically tunable color filter[105]; (e) Schematic of graphene metasurface modulator[106]

    图 9  光谱重建算法。(a)光谱重建系统示意图[82];(b)宽带光谱的重建结果[82]; (c)基于CS理论的窄带光谱重建结果[81]; (d)参数约束光谱编码器和解码器的设计框架[83]; (e)基于深度学习的重建结果[113]

    Figure 9.  Spectral reconstruction algorithm. (a) Schematic diagram of spectral reconstruction system[82]; (b) Reconstruction results of broadband spectra[82]; (c) Narrow band spectral reconstruction results based on CS theory[81]; (d) Design framework for parametric constrained spectral encoders and decoders[83]; (e) Reconstruction results based on deep learning[113]

    图 10  (a)分子指纹检索和空间吸收绘图[68];(b)利用介电超构表面对石墨烯进行光学表征[66];(c)用于小鼠脑血流动力学成像的超构表面装置图[81]

    Figure 10.  (a) Molecular fingerprint retrieval and spatial absorption mapping[68]; (b) Optical characterization of graphene using dielectric metasurface[66]; (c) Metasurface device diagram for mouse cerebral hemodynamic imaging[81]

    图 11  (a)对真脸和其他面具的光谱测量结果[79];(b)密码显示的工作原理图[117];(c)通过可见光波段不透明物体的近红外成像演示[119]

    Figure 11.  (a) Spectral measurement results of a real face and other masks[79]; (b) Operation schematic of the crypto-display[117]; (c) Demonstration of NIR imaging through the object that is opaque at visible wavelengths[119]

  • [1]

    Gowen A A, O'Donnell C P, Cullen P J, et al. Hyperspectral imaging - an emerging process analytical tool for food quality and safety control[J]. Trends Food Sci Technol, 2007, 18(12): 590−598. doi: 10.1016/j.jpgs.2007.06.001

    [2]

    Delalieux S, Auwerkerken A, Verstraeten W W, et al. Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in apple leaves[J]. Remote Sens, 2009, 1(4): 858−874. doi: 10.3390/rs1040858

    [3]

    Kong L H, Yi D R, Sprigle S H, et al. Single sensor that outputs narrowband multispectral images[J]. J Biomed Opt, 2010, 15(1): 010502. doi: 10.1117/1.3277669

    [4]

    Qi H R, Kong L H, Wang C, et al. A hand-held mosaicked multispectral imaging device for early stage pressure ulcer detection[J]. J Med Syst, 2011, 35(5): 895−904. doi: 10.1007/s10916-010-9508-x

    [5]

    Khorasaninejad M, Chen W T, Zhu A Y, et al. Multispectral chiral imaging with a metalens[J]. Nano Lett, 2016, 16(7): 4595−4600. doi: 10.1021/acs.nanolett.6b01897

    [6]

    Avrutsky I, Chaganti K, Salakhutdinov I, et al. Concept of a miniature optical spectrometer using integrated optical and micro-optical components[J]. Appl Opt, 2006, 45(30): 7811−7817. doi: 10.1364/AO.45.007811

    [7]

    Lin H A, Huang C S. Linear variable filter based on a gradient grating period guided-mode resonance filter[J]. IEEE Photonics Technol Lett, 2016, 28(9): 1042−1045. doi: 10.1109/LPT.2016.2524655

    [8]

    Le Coarer E, Blaize S, Benech P, et al. Wavelength-scale stationary-wave integrated Fourier-transform spectrometry[J]. Nat Photonics, 2007, 1(8): 473−478. doi: 10.1038/nphoton.2007.138

    [9]

    Kita D M, Miranda B, Favela D, et al. High-performance and scalable on-chip digital Fourier transform spectroscopy[J]. Nat Commun, 2018, 9(1): 4405. doi: 10.1038/s41467-018-06773-2

    [10]

    Vasiliev A, Malik A, Muneeb M, et al. On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators[J]. ACS Sens, 2016, 1(11): 1301−1307. doi: 10.1021/acssensors.6b00428

    [11]

    Nitkowski A, Chen L, Lipson M. Cavity-enhanced on-chip absorption spectroscopy using microring resonators[J]. Opt Express, 2008, 16(16): 11930−11936. doi: 10.1364/OE.16.011930

    [12]

    Hartmann W, Varytis P, Gehring H, et al. Waveguide-integrated broadband spectrometer based on tailored disorder[J]. Adv Opt Mater, 2020, 8(6): 1901602. doi: 10.1002/adom.201901602

    [13]

    Falcone F, Lopetegi T, Laso M A G, et al. Babinet principle applied to the design of metasurfaces and metamaterials[J]. Phys Rev Lett, 2004, 93(19): 197401. doi: 10.1103/PhysRevLett.93.197401

    [14]

    Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333−337. doi: 10.1126/science.1210713

    [15]

    Dai J Y, Zhao J, Cheng Q, et al. Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface[J]. Light Sci Appl, 2018, 7: 90. doi: 10.1038/s41377-018-0092-z

    [16]

    Yuan Q, Ge Q, Chen L S, et al. Recent advanced applications of metasurfaces in multi-dimensions[J]. Nanophotonics, 2023, 12(13): 2295−2315. doi: 10.1515/nanoph-2022-0803

    [17]

    杨睿, 于千茜, 潘一苇, 等. 基于片上超表面的多路方向复用全息术[J]. 光电工程, 2022, 49(10): 220177. doi: 10.12086/oee.2022.220177

    Yang R, Yu Q Q, Pan Y W, et al. Directional-multiplexing holography by on-chip metasurface[J]. Opto-Electron Eng, 2022, 49(10): 220177. doi: 10.12086/oee.2022.220177

    [18]

    Wang S M, Wu P C, Su V C, et al. Broadband achromatic optical metasurface devices[J]. Nat Commun, 2017, 8(1): 187. doi: 10.1038/s41467-017-00166-7

    [19]

    Wang S M, Wu P C, Su V C, et al. A broadband achromatic metalens in the visible[J]. Nat Nanotechnol, 2018, 13(3): 227−232. doi: 10.1038/s41565-017-0052-4

    [20]

    Liu H C, Yang B, Guo Q H, et al. Single-pixel computational ghost imaging with helicity-dependent metasurface hologram[J]. Sci Adv, 2017, 3(9): e1701477. doi: 10.1126/sciadv.1701477

    [21]

    Yang Y H, Jing L Q, Zheng B, et al. Full-polarization 3D metasurface cloak with preserved amplitude and phase[J]. Adv Mater, 2016, 28(32): 6866−6871. doi: 10.1002/adma.201600625

    [22]

    Su V C, Chu C H, Sun G, et al. Advances in optical metasurfaces: fabrication and applications [invited][J]. Opt Express, 2018, 26(10): 13148−13182. doi: 10.1364/OE.26.013148

    [23]

    Chen W T, Zhu A Y, Sanjeev V, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nat Nanotechnol, 2018, 13(3): 220−226. doi: 10.1038/s41565-017-0034-6

    [24]

    Li K, Guo Y H, Pu M B, et al. Dispersion controlling meta-lens at visible frequency[J]. Opt Express, 2017, 25(18): 21419−21427. doi: 10.1364/OE.25.021419

    [25]

    Xie T, Zhang F, Pu M B, et al. Integrated multispectral real-time imaging system based on metasurfaces[J]. Opt Express, 2020, 28(24): 36445−36454. doi: 10.1364/OE.411353

    [26]

    Nishiwaki S, Nakamura T, Hiramoto M, et al. Efficient colour splitters for high-pixel-density image sensors[J]. Nat Photonics, 2013, 7(3): 240−246. doi: 10.1038/nphoton.2012.345

    [27]

    Li Z Y, Palacios E, Butun S, et al. Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting[J]. Nano Lett, 2015, 15(3): 1615−1621. doi: 10.1021/nl5041572

    [28]

    Khorasaninejad M, Chen W T, Oh J, et al. Super-dispersive off-axis meta-lenses for compact high resolution spectroscopy[J]. Nano Lett, 2016, 16(6): 3732−3737. doi: 10.1021/acs.nanolett.6b01097

    [29]

    Zhu A Y, Chen W T, Khorasaninejad M, et al. Ultra-compact visible chiral spectrometer with meta-lenses[J]. APL Photonics, 2017, 2(3): 036103. doi: 10.1063/1.4974259

    [30]

    Zhu A Y, Chen W T, Sisler J, et al. Compact aberration‐corrected spectrometers in the visible using dispersion‐tailored metasurfaces[J]. Adv Opt Mater, 2019, 7(14): 1801144. doi: 10.1002/adom.201801144

    [31]

    Zhou Y, Chen R, Ma Y G. Characteristic analysis of compact spectrometer based on off-axis meta-lens[J]. Appl Sci, 2018, 8(3): 321. doi: 10.3390/app8030321

    [32]

    Mohan A, Oberoi D. 4D data cubes from radio-interferometric spectroscopic snapshot imaging[J]. Sol Phys, 2017, 292(11): 168. doi: 10.1007/s11207-017-1193-1

    [33]

    Gómez-Sánchez A, Marro M, Marsal M, et al. 3D and 4D image fusion: coping with differences in spectroscopic modes among hyperspectral images[J]. Anal Chem, 2020, 92(14): 9591−9602. doi: 10.1021/acs.analchem.0c00780

    [34]

    Faraji-Dana M, Arbabi E, Arbabi A, et al. Compact folded metasurface spectrometer[J]. Nat Commun, 2018, 9(1): 4196. doi: 10.1038/s41467-018-06495-5

    [35]

    Faraji-Dana M, Arbabi E, Kwon H, et al. Hyperspectral imager with folded metasurface optics[J]. ACS Photonics, 2019, 6(8): 2161−2167. doi: 10.1021/acsphotonics.9b00744

    [36]

    Hua X, Wang Y J, Wang S M, et al. Ultra-compact snapshot spectral light-field imaging[J]. Nat Commun, 2022, 13(1): 2732. doi: 10.1038/s41467-022-30439-9

    [37]

    Billuart J, Héron S, Loiseaux B, et al. Towards a metasurface adapted to hyperspectral imaging applications: from subwavelength design to definition of optical properties[J]. Opt Express, 2021, 29(21): 32764−32777. doi: 10.1364/OE.432969

    [38]

    Chen Y F, Zhao R Z, He H Y, et al. Spectrum dispersion element based on the metasurface with parabolic phase[J]. Opt Express, 2022, 30(18): 32670−32679. doi: 10.1364/OE.469004

    [39]

    Gao H, Fan X H, Wang Y X, et al. Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction[J]. Opto-Electron Sci, 2023, 2(3): 220026. doi: 10.29026/oes.2023.220026

    [40]

    Zhu J C, Zhou J K, Shen W M. Polarisation‐independent diffraction grating based on dielectric metasurface[J]. Electron Lett, 2019, 55(13): 756−759. doi: 10.1049/el.2019.1203

    [41]

    Eichenholz J M, Barnett N, Juang Y, et al. Real-time megapixel multispectral bioimaging[J]. Proc SPIE, 2010, 7568: 75681L. doi: 10.1117/12.842563

    [42]

    Wang S W, Chen X S, Lu W, et al. Integrated optical filter arrays fabricated by using the combinatorial etching technique[J]. Opt Lett, 2006, 31(3): 332−334. doi: 10.1364/OL.31.000332

    [43]

    Wang S W, Li M, Xia C S, et al. 128 channels of integrated filter array rapidly fabricated by using the combinatorial deposition technique[J]. Appl Phys B, 2007, 88(2): 281−284. doi: 10.1007/s00340-007-2726-3

    [44]

    Wang S W, Xia C S, Chen X S, et al. Concept of a high-resolution miniature spectrometer using an integrated filter array[J]. Opt Lett, 2007, 32(6): 632−634. doi: 10.1364/OL.32.000632

    [45]

    Xu T, Wu Y K, Luo X G, et al. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging[J]. Nat Commun, 2010, 1: 59. doi: 10.1038/ncomms1058

    [46]

    Horie Y, Arbabi A, Arbabi E, et al. Wide bandwidth and high resolution planar filter array based on DBR-metasurface-DBR structures[J]. Opt Express, 2016, 24(11): 11677−11682. doi: 10.1364/OE.24.011677

    [47]

    McClung A, Samudrala S, Torfeh M, et al. Snapshot spectral imaging with parallel metasystems[J]. Sci Adv, 2020, 6(38): eabc7646. doi: 10.1126/sciadv.abc7646

    [48]

    Jang W Y, Ku Z, Jeon J, et al. Experimental demonstration of adaptive infrared multispectral imaging using plasmonic filter array[J]. Sci Rep, 2016, 6: 34876. doi: 10.1038/srep34876

    [49]

    Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6668): 667−669. doi: 10.1038/35570

    [50]

    Najiminaini M, Vasefi F, Kaminska B, et al. Experimental and numerical analysis on the optical resonance transmission properties of nano-hole arrays[J]. Opt Express, 2010, 18(21): 22255−22270. doi: 10.1364/OE.18.022255

    [51]

    Gan X T, Pervez N, Kymissis I, et al. A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array[J]. Appl Phys Lett, 2012, 100(23): 231104. doi: 10.1063/1.4724177

    [52]

    Najiminaini M, Vasefi F, Kaminska B, et al. Nanohole-array-based device for 2D snapshot multispectral imaging[J]. Sci Rep, 2013, 3: 2589. doi: 10.1038/srep02589

    [53]

    Kaplan A F, Xu T, Jay Guo L. High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography[J]. Appl Phys Lett, 2011, 99(14): 143111. doi: 10.1063/1.3647633

    [54]

    Lee K, Choi H J, Son J, et al. THz near-field spectral encoding imaging using a rainbow metasurface[J]. Sci Rep, 2015, 5: 14403. doi: 10.1038/srep14403

    [55]

    McCrindle I J H, Grant J P, Gouveia L C P, et al. Infrared plasmonic filters integrated with an optical and terahertz multi-spectral material[J]. Phys Status Solidi (A), 2015, 212(8): 1625−1633. doi: 10.1002/pssa.201431943

    [56]

    Lee J, Park Y, Kim H, et al. Compact meta-spectral image sensor for mobile applications[J]. Nanophotonics, 2022, 11(11): 2563−2569. doi: 10.1515/nanoph-2021-0706

    [57]

    Chen Q, Das D, Chitnis D, et al. A CMOS image sensor integrated with plasmonic colour filters[J]. Plasmonics, 2012, 7(4): 695−699. doi: 10.1007/s11468-012-9360-6

    [58]

    Miao L D, Qi H R. The design and evaluation of a generic method for generating mosaicked multispectral filter arrays[J]. IEEE Trans Image Process, 2006, 15(9): 2780−2791. doi: 10.1109/TIP.2006.877315

    [59]

    Miao L D, Qi H R, Ramanath R, et al. Binary tree-based generic demosaicking algorithm for multispectral filter arrays[J]. IEEE Trans Image Process, 2006, 15(11): 3550−3558. doi: 10.1109/TIP.2006.877476

    [60]

    Jang W Y, Hayat M M, Tyo J S, et al. Demonstration of bias-controlled algorithmic tuning of quantum dots in a well (DWELL) MidIR detectors[J]. IEEE J Quantum Electron, 2009, 45(6): 674−683. doi: 10.1109/JQE.2009.2013150

    [61]

    Grant J, McCrindle I J H, Li C, et al. Multispectral metamaterial absorber[J]. Opt Lett, 2014, 39(5): 1227−1230. doi: 10.1364/OL.39.001227

    [62]

    Chang A S P, Morton K J, Tan H, et al. Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography[J]. IEEE Photonics Technol Lett, 2007, 19(19): 1457−1459. doi: 10.1109/LPT.2007.903719

    [63]

    Dao T D, Ishii S, Yokoyama T, et al. Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors[J]. ACS Photonics, 2016, 3(7): 1271−1278. doi: 10.1021/acsphotonics.6b00249

    [64]

    Mauser K W, Kim S, Mitrovic S, et al. Resonant thermoelectric nanophotonics[J]. Nat Nanotechnol, 2017, 12(8): 770−775. doi: 10.1038/nnano.2017.87

    [65]

    Wen S, Jin C Q, Yang Y M. Multilayer Huygens’ metasurface absorber toward snapshot multispectral imaging[J]. J Opt, 2021, 23(4): 044001. doi: 10.1088/2040-8986/abe7fa

    [66]

    Yesilkoy F, Arvelo E R, Jahani Y, et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces[J]. Nat Photonics, 2019, 13(6): 390−396. doi: 10.1038/s41566-019-0394-6

    [67]

    Wang S S, Magnusson R. Theory and applications of guided-mode resonance filters[J]. Appl Opt, 1993, 32(14): 2606−2613. doi: 10.1364/AO.32.002606

    [68]

    Tittl A, Leitis A, Liu M K, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 2018, 360(6393): 1105−1109. doi: 10.1126/science.aas9768

    [69]

    Yao M D, Xiong Z W, Wang L Z, et al. Spectral- depth imaging with deep learning based reconstruction[J]. Opt Express, 2019, 27(26): 38312−38325. doi: 10.1364/OE.27.038312

    [70]

    Wang Z J, Chen B, Lu R Y, et al. FusionNet: an unsupervised convolutional variational network for hyperspectral and multispectral image fusion[J]. IEEE Trans Image Process, 2020, 29: 7565−7577. doi: 10.1109/TIP.2020.3004261

    [71]

    Chen Y Y, Zhu Y L, Britton W A, et al. Inverse design of ultracompact multi-focal optical devices by diffractive neural networks[J]. Opt Lett, 2022, 47(11): 2842−2845. doi: 10.1364/OL.460186

    [72]

    Chang C C, Lee H N. On the estimation of target spectrum for filter-array based spectrometers[J]. Opt Express, 2008, 16(2): 1056−1061. doi: 10.1364/OE.16.001056

    [73]

    Morawski R Z, Miekina A. Improving absorbance spectrum reconstruction via spectral data decomposition and pseudo-baseline optimization[J]. IEEE Trans Instrum Meas, 2009, 58(3): 691−697. doi: 10.1109/TIM.2008.2003328

    [74]

    Chen Q, Chitnis D, Walls K, et al. CMOS photodetectors integrated with plasmonic color filters[J]. IEEE Photonics Technol Lett, 2012, 24(3): 197−199. doi: 10.1109/LPT.2011.2176333

    [75]

    Yoon Y T, Lee S S, Lee B S. Nano-patterned visible wavelength filter integrated with an image sensor exploiting a 90-nm CMOS process[J]. Photonics Nanostruct - Fundam Appl, 2012, 10(1): 54−59. doi: 10.1016/j.photonics.2011.07.002

    [76]

    Wang Z, Yi S, Chen A, et al. Single-shot on-chip spectral sensors based on photonic crystal slabs[J]. Nat Commun, 2019, 10(1): 1020. doi: 10.1038/s41467-019-08994-5

    [77]

    Yang J W, Cui K Y, Cai X S, et al. Ultraspectral imaging based on metasurfaces with freeform shaped meta‐atoms[J]. Laser Photonics Rev, 2022, 16(7): 2100663. doi: 10.1002/lpor.202100663

    [78]

    Wu X L, Gao D H, Chen Q, et al. Multispectral imaging via nanostructured random broadband filtering[J]. Opt Express, 2020, 28(4): 4859−4875. doi: 10.1364/OE.381609

    [79]

    Rao S J, Huang Y D, Cui K Y, et al. Anti-spoofing face recognition using a metasurface-based snapshot hyperspectral image sensor[J]. Optica, 2022, 9(11): 1253−1259. doi: 10.1364/OPTICA.469653

    [80]

    Wu Z P, Zhang Z Q, Xu Y J, et al. Random color filters based on an all-dielectric metasurface for compact hyperspectral imaging[J]. Opt Lett, 2022, 47(17): 4548−4551. doi: 10.1364/OL.469097

    [81]

    Xiong J, Cai X S, Cui K Y, et al. Dynamic brain spectrum acquired by a real-time ultraspectral imaging chip with reconfigurable metasurfaces[J]. Optica, 2022, 9(5): 461−468. doi: 10.1364/OPTICA.440013

    [82]

    Kurokawa U, Choi B I, Chang C C. Filter-based miniature spectrometers: spectrum reconstruction using adaptive regularization[J]. IEEE Sens J, 2011, 11(7): 1556−1563. doi: 10.1109/JSEN.2010.2103054

    [83]

    Song H Y, Ma Y G, Han Y B, et al. Deep‐learned broadband encoding stochastic filters for computational spectroscopic instruments[J]. Adv Theory Simul, 2021, 4(3): 2000299. doi: 10.1002/adts.202000299

    [84]

    Redding B, Liew S F, Sarma R, et al. Compact spectrometer based on a disordered photonic chip[J]. Nat Photonics, 2013, 7(9): 746−751. doi: 10.1038/nphoton.2013.190

    [85]

    Wang Z, Yu Z F. Spectral analysis based on compressive sensing in nanophotonic structures[J]. Opt Express, 2014, 22(21): 25608−25614. doi: 10.1364/OE.22.025608

    [86]

    Shaltout A M, Kim J, Boltasseva A, et al. Ultrathin and multicolour optical cavities with embedded metasurfaces[J]. Nat Commun, 2018, 9(1): 2673. doi: 10.1038/s41467-018-05034-6

    [87]

    Yang T, Xu C, Ho H P, et al. Miniature spectrometer based on diffraction in a dispersive hole array[J]. Opt Lett, 2015, 40(13): 3217−3220. doi: 10.1364/OL.40.003217

    [88]

    Liu D L, Li Z H. New nano-structure spectrometer by introducing gold nano-pillars for spectral reconstruction ability improvement[J]. Opt Commun, 2022, 502: 127419. doi: 10.1016/j.optcom.2021.127419

    [89]

    Stewart J W, Akselrod G M, Smith D R, et al. Toward multispectral imaging with colloidal metasurface pixels[J]. Adv Mater, 2017, 29(6): 1602971. doi: 10.1002/adma.201602971

    [90]

    Craig B, Shrestha V R, Meng J J, et al. Experimental demonstration of infrared spectral reconstruction using plasmonic metasurfaces[J]. Opt Lett, 2018, 43(18): 4481−4484. doi: 10.1364/OL.43.004481

    [91]

    Xiao Y, Wei S, Xu J J, et al. Superconducting single-photon spectrometer with 3D-printed photonic-crystal filters[J]. ACS Photonics, 2022, 9(10): 3450−3456. doi: 10.1021/acsphotonics.2c01097

    [92]

    Pelzman C, Cho S Y. Multispectral and polarimetric photodetection using a plasmonic metasurface[J]. J Appl Phys, 2018, 123(4): 043107. doi: 10.1063/1.5011167

    [93]

    Pelzman C, Cho S Y. Plasmonic metasurface for simultaneous detection of polarization and spectrum[J]. Opt Lett, 2016, 41(6): 1213−1216. doi: 10.1364/OL.41.001213

    [94]

    Yang J W, Cui K Y, Huang Y D, et al. Angle-insensitive spectral imaging based on topology-optimized plasmonic metasurfaces[Z]. arXiv: 2212.07813, 2022. https://arxiv.org/abs/2212.07813.

    [95]

    Liu T R, Fiore A. Designing open channels in random scattering media for on-chip spectrometers[J]. Optica, 2020, 7(8): 934−939. doi: 10.1364/OPTICA.391612

    [96]

    Ma T G, Tobah M, Wang H Z, et al. Benchmarking deep learning-based models on nanophotonic inverse design problems[J]. Opto-Electron Sci, 2022, 1(1): 210012. doi: 10.29026/oes.2022.210012

    [97]

    Zhao Q, Kang L, Du B, et al. Electrically tunable negative permeability metamaterials based on nematic liquid crystals[J]. Appl Phys Lett, 2007, 90(1): 011112. doi: 10.1063/1.2430485

    [98]

    Song S C, Chen Q, Jin L, et al. Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber[J]. Nanoscale, 2013, 5(20): 9615−9619. doi: 10.1039/c3nr03505k

    [99]

    Ebermann M, Neumann N, Hiller K, et al. Tunable MEMS Fabry-Pérot filters for infrared microspectrometers: a review[J]. Proc SPIE, 2016, 9760: 97600H. doi: 10.1117/12.2209288

    [100]

    Cao T, Wei C W, Simpson R E, et al. Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies[J]. Sci Rep, 2014, 4: 3955. doi: 10.1038/srep03955

    [101]

    Guo Z Y, Yang X, Shen F, et al. Active-tuning and polarization-independent absorber and sensor in the infrared region based on the phase change material of Ge2Sb2Te5 (GST)[J]. Sci Rep, 2018, 8(1): 12433. doi: 10.1038/s41598-018-30550-2

    [102]

    Julian M N, Williams C, Borg S, et al. Reversible optical tuning of GeSbTe phase-change metasurface spectral filters for mid-wave infrared imaging[J]. Optica, 2020, 7(7): 746−754. doi: 10.1364/OPTICA.392878

    [103]

    Tao C N, Zhu H Z, Zhang Y S, et al. Shortwave infrared single-pixel spectral imaging based on a GSST phase-change metasurface[J]. Opt Express, 2022, 30(19): 33697−33707. doi: 10.1364/OE.467994

    [104]

    Aspnes D E. Local-field effects and effective-medium theory: a microscopic perspective[J]. Am J Phys, 1982, 50(8): 704−709. doi: 10.1119/1.12734

    [105]

    Lee Y, Park M K, Kim S, et al. Electrical broad tuning of plasmonic color filter employing an asymmetric-lattice nanohole array of metasurface controlled by polarization rotator[J]. ACS Photonics, 2017, 4(8): 1954−1966. doi: 10.1021/acsphotonics.7b00249

    [106]

    Shrestha V R, Craig B, Meng J J, et al. Mid- to long-wave infrared computational spectroscopy with a graphene metasurface modulator[J]. Sci Rep, 2020, 10(1): 5377. doi: 10.1038/s41598-020-61998-w

    [107]

    Duempelmann L, Gallinet B, Novotny L. Multispectral imaging with tunable plasmonic filters[J]. ACS Photonics, 2017, 4(2): 236−241. doi: 10.1021/acsphotonics.6b01003

    [108]

    Huang L Q, Luo R C, Liu X, et al. Spectral imaging with deep learning[J]. Light Sci Appl, 2022, 11(1): 61. doi: 10.1038/s41377-022-00743-6

    [109]

    Hansen P C. Analysis of discrete ill-posed problems by means of the L-curve[J]. SIAM Rev, 1992, 34(4): 561−580. doi: 10.1137/1034115

    [110]

    Golub G H, Heath M, Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter[J]. Technometrics, 1979, 21(2): 215−223. doi: 10.1080/00401706.1979.10489751

    [111]

    August Y, Stern A. Compressive sensing spectrometry based on liquid crystal devices[J]. Opt Lett, 2013, 38(23): 4996−4999. doi: 10.1364/OL.38.004996

    [112]

    Jiang Y Y, Li G M, Ge H Y, et al. Adaptive compressed sensing algorithm for terahertz spectral image reconstruction based on residual learning[J]. Spectrochim Acta Part A Mol Biomol Spectrosc, 2022, 281: 121586. doi: 10.1016/j.saa.2022.121586

    [113]

    Zhang W Y, Song H Y, He X, et al. Deeply learned broadband encoding stochastic hyperspectral imaging[J]. Light Sci Appl, 2021, 10(1): 108. doi: 10.1038/s41377-021-00545-2

    [114]

    Connolly P W R, Valli J, Shah Y D, et al. Simultaneous multi-spectral, single-photon fluorescence imaging using a plasmonic colour filter array[J]. J Biophotonics, 2021, 14(7): e202000505. doi: 10.1002/jbio.202000505

    [115]

    Meng J J, Weston L, Balendhran S, et al. Compact chemical identifier based on plasmonic metasurface integrated with microbolometer array[J]. Laser Photonics Rev, 2022, 16(4): 2100436. doi: 10.1002/lpor.202100436

    [116]

    Kim G, Kim Y, Yun J, et al. Metasurface-driven full-space structured light for three-dimensional imaging[J]. Nat Commun, 2022, 13(1): 5920. doi: 10.1038/s41467-022-32117-2

    [117]

    Yoon G, Lee D, Nam K T, et al. "Crypto-display" in dual-mode metasurfaces by simultaneous control of phase and spectral responses[J]. ACS Nano, 2018, 12(7): 6421−6428. doi: 10.1021/acsnano.8b01344

    [118]

    Xu Z J, Li N X, Dong Y, et al. Metasurface-based subtractive color filter fabricated on a 12-inch glass wafer using a CMOS platform[J]. Photonics Res, 2021, 9(1): 13−20. doi: 10.1364/PRJ.404124

    [119]

    Park H, Crozier K B. Multispectral imaging with vertical silicon nanowires[J]. Sci Rep, 2013, 3: 2460. doi: 10.1038/srep02460

  • 加载中

(12)

计量
  • 文章访问数:  4160
  • PDF下载数:  957
  • 施引文献:  0
出版历程
收稿日期:  2023-06-19
修回日期:  2023-08-19
录用日期:  2023-08-22
刊出日期:  2023-09-27

目录

/

返回文章
返回