-
摘要:
矢量光场,即具有可任意设计的波前和偏振态分布的光场,因其具有复用维度高、紧聚焦能力强、光场操控自由度大、手性筛选等特点,相较于均匀标量场具有更大的调控自由度和更广阔的应用前景,而引起了国内外科学家的广泛关注。如今,微纳光学的快速发展更为拓宽矢量光场调控的自由度、维度、尺度等方面提供全新契机。《光电工程》于2024年组织的“矢量光场调控”专题共收到10篇来稿,包括7篇综述和3篇原创论文,旨在展现近年来矢量光场调控的国内外重要研究进展和成果,让读者对矢量光场的研究现状、趋势和应用前景有更深刻的认识,也能为相关领域研究人员提供有益的帮助。
Abstract:Vector optical field, which have arbitrarily designed wavefronts and polarization state distributions, have attracted widespread attention from scientists over the word due to their high multiplexing dimensions, strong tight focusing ability, flexible light field manipulation capability, and chirality selection. Compared with uniform scalar fields, they have greater control freedom and broader application prospects. Nowadays, the rapid development of micro-nano optics provides new opportunities for expanding the freedom, dimensions, and scales of vector optical field manipulation. The special issue on vector optical field manipulation in 2024 has received 10 manuscripts, including 7 review articles and 3 original articles. It aims to showcase the important research progress and achievements in vector optical field manipulation over recent years, allowing readers to have a deeper understanding of the current status, trends, and application prospects of vector optical field research, and also providing helpful assistance to researchers in related fields.
-
Key words:
- Vector optical field /
- optical field manipulation /
- special issue
-
[1] Rosales-Guzmán C, Ndagano B, Forbes A. A review of complex vector light fields and their applications[J]. J Opt, 2018, 20(12): 123001. doi: 10.1088/2040-8986/aaeb7d
[2] He C, Shen Y J, Forbes A. Towards higher-dimensional structured light[J]. Light Sci Appl, 2022, 11(1): 205. doi: 10.1038/s41377-022-00897-3
[3] Rubin N A, D’Aversa G, Chevalier P, et al. Matrix Fourier optics enables a compact full-stokes polarization camera[J]. Science, 2019, 365(6448): eaax1839. doi: 10.1126/science.aax1839
[4] Wang J Y, Tan X D, Qi P L, et al. Linear polarization holography[J]. Opto-Electron Sci, 2022, 1(2): 210009. doi: 10.29026/oes.2022.210009
[5] Lee K G, Kihm H W, Kihm J E, et al. Vector field microscopic imaging of light[J]. Nat Photonics, 2007, 1(1): 53−56. doi: 10.1038/nphoton.2006.37
[6] Jia W H, Gao C X, Zhao Y M, et al. Intracavity spatiotemporal metasurfaces[J]. Adv Photonics, 2023, 5(2): 026002. doi: 10.1117/1.AP.5.2.026002
[7] 倪一博, 闻顺, 沈子程, 等. 基于超构表面的多维光场感知[J]. 中国激光, 2021, 48(19): 1918003. doi: 10.3788/CJL202148.1918003
Ni Y B, Wen S, Shen Z C, et al. Multidimensional light field sensing based on metasurfaces[J]. Chin J Lasers, 2021, 48(19): 1918003. doi: 10.3788/CJL202148.1918003
[8] 柯岚, 章思梦, 李晨霞, 等. 超表面实现复杂矢量涡旋光束的研究进展[J]. 光电工程, 2023, 50(8): 230117. doi: 10.12086/oee.2023.230117
Ke L, Zhang S M, Li C X, et al. Research progress on hybrid vector beam implementation by metasurfaces[J]. Opto-Electron Eng, 2023, 50(8): 230117. doi: 10.12086/oee.2023.230117
[9] Lou K, Qian S X, Wang X L, et al. Two-dimensional microstructures induced by femtosecond vector light fields on silicon[J]. Opt Express, 2012, 20(1): 120−127. doi: 10.1364/OE.20.000120
[10] Nan T, Zhao H, Guo J Y, et al. Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces[J]. Opto-Electron Sci, 2024, 3(5): 230052. doi: 10.29026/oes.2024.230052
[11] Yue Z, Li J T, Li J, et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion[J]. Opto-Electron Sci, 2022, 1(3): 210014. doi: 10.29026/oes.2022.210014
[12] 梁茂伟, 卢德宙, 马耀光. 超表面的矢量光场调控[J]. 光电工程, 2024, 51(8): 240068 doi: 10.12086/oee.2024.240068
Liang M W, Lu D Z, Ma Y G. Vectorial optical fields manipulation via metasurfaces[J]. Opto-Electron Eng, 2024, 51(8): 240068 doi: 10.12086/oee.2024.240068
[13] 叶依琦, 皮大普, 顾敏, 等. 矢量全息技术的研究进展与应用[J]. 光电工程, 2024, 51(7): 240082 doi: 10.12086/oee.2024.240082
Ye Y Q, Pi D P, Gu M, et al. Research progress and applications of vectorial holography[J]. Opto-Electron Eng, 2024, 51(7): 240082 doi: 10.12086/oee.2024.240082
[14] 杨辉, 何海蓉, 胡跃强, 等. 超构表面赋能的矢量光场调控、检测与应用[J]. 光电工程, 2024, 51(8): 240168 doi: 10.12086/oee.2024.240168
Yang H, He H R, Hu Y Q, et al. Metasurface-empowered vector light field regulation, detection and application[J]. Opto-Electron Eng, 2024, 51(8): 240168 doi: 10.12086/oee.2024.240168
[15] 张智超, 海澜, 张书瑞, 等. 复杂结构光场的多自由度协同调控技术研究进展[J]. 光电工程, 2024, 51(7): 240079 doi: 10.12086/oee.2024.240079
Zhang Z C, Hai L, Zhang S R, et al. Advances on the manipulation of structured beams with multiple degrees of freedom[J]. Opto-Electron Eng, 2024, 51(7): 240079 doi: 10.12086/oee.2024.240079
[16] 胡浩, 胡晓雪, 贡丽萍, 等. 太赫兹矢量光束的研究进展[J]. 光电工程, 2024, 51(7): 240071 doi: 10.12086/oee.2024.240071
Hu H, Hu X X, Gong L P, et al. Research progress of terahertz vector beams[J]. Opto-Electron Eng, 2024, 51(7): 240071 doi: 10.12086/oee.2024.240071
[17] 谢辰, 刘彤炎. 矢量涡旋光场在激光微纳加工中的应用[J]. 光电工程, 2024, 51(8): 240089 doi: 10.12086/oee.2024.240089
Xie C, Liu T Y. Applications of vector vortex beams in laser micro-/nanomachining[J]. Opto-Electron Eng, 2024, 51(8): 240089 doi: 10.12086/oee.2024.240089
[18] 王皓萱, 何彦霖, 祝航威, 等. 超表面偏振器件研究进展与展望[J]. 光电工程, 2024, 51(7): 240095 doi: 10.12086/oee.2024.240095
Wang H X, He Y L, Zhu H W, et al. Research progress and prospects of metasurface polarization devices[J]. Opto-Electron Eng, 2024, 51(7): 240095 doi: 10.12086/oee.2024.240095
[19] 龚攀, 杜安斌, 张飞, 等. 用于超构表面衍射光帆光力测量的扭秤设计[J]. 光电工程, 2024, 51(7): 240040 doi: 10.12086/oee.2024.240040
Gong P, Du A B, Zhang F, et al. Torsion pendulum design for metasurface-based diffraction light sail optical force measurement[J]. Opto-Electron Eng, 2024, 51(7): 240040 doi: 10.12086/oee.2024.240040
[20] 夏睿星, 赵东, 李子勤, 等. 大视场角、等衍射角间隔的矢量超构表面分束器[J]. 光电工程, 2024, 51(7): 240141 doi: 10.12086/oee.2024.240141
Xia R X, Zhao D, Li Z Q, et al. Metasurface beamsplitter with large field of view and equal diffraction angle interval[J]. Opto-Electron Eng, 2024, 51(7): 240141 doi: 10.12086/oee.2024.240141
[21] 易政宇, 李阳, 梁厚昆, 等. 基于离轴级联超表面的轨道角动量解复用系统设计[J]. 光电工程, 2024, 51(8): 240161 doi: 10.12086/oee.2024.240161
Yi Z Y, Li Y, Liang H K, et al. Design of an orbital angular momentum demultiplexing system based on off-axis cascaded metasurfaces[J]. Opto-Electron Eng, 2024, 51(8): 240161 doi: 10.12086/oee.2024.240161