-
摘要:
Zernike多项式因其正交性和旋转不变性,被广泛应用于光学表面的表征和优化中。它能够有效地减少拟合误差,并通过少量的系数实现对复杂曲面的高精度描述,有助于提升光学系统的成像质量和简化性能分析。本文首先对自由曲面描述方法进行了概括,包括全局描述与局部描述两种方式;随后讨论了国内外关于Zernike多项式在曲面表征中的研究进展,探讨了Zernike多项式在曲面表征中的实际应用;最后展望了Zernike多项式在曲面表征领域的发展前景。
-
关键词:
- Zernike多项式 /
- 自由曲面 /
- 曲面表征 /
- 光学设计
Abstract:Zernike polynomials, due to their orthogonality and rotational invariance, are widely used in the characterization and optimization of optical surfaces. They can effectively reduce fitting errors and provide high-precision descriptions of complex surfaces with only a few coefficients, contributing to improved imaging quality and simplified performance analysis in optical systems. This paper provides an overview of freeform surface description methods, including both global and local approaches. It discusses the research progress on Zernike polynomials in surface characterization, both domestically and internationally, explores their practical applications in this field, and finally anticipates the future prospects of Zernike polynomials in surface characterization.
-
Key words:
- Zernike polynomials /
- freeform surface /
- surface characterization /
- optical design
-
Overview: This manuscript offers a detailed review of the advancements in the application of Zernike polynomials for surface characterization in optics. Zernike polynomials, known for their orthogonality and rotational invariance, have been extensively utilized in the characterization and optimization of optical surfaces. This paper first provides an overview of freeform surface description methods and discusses significant progress in the research of Zernike polynomials both domestically and internationally, exploring their practical applications in surface characterization. Finally, it anticipates the future prospects of Zernike polynomials in the field of surface characterization. Freeform surfaces, due to their non-rotational symmetric properties, present significant challenges for traditional optical design. Zernike polynomials offer a precise method to describe these complex surfaces, significantly improving the imaging quality and overall performance of optical systems. The paper highlights the application of Zernike polynomials in optical wavefront analysis and wavefront distortion, emphasizing their ability to decompose complex surfaces into independent components, reducing redundancy, and simplifying error analysis and characterization processes. International research has expanded the application range of Zernike polynomials beyond circular apertures, addressing limitations in traditional methods. These studies have explored applications, such as wavefront reconstruction and optical surface characterization. By developing orthogonal polynomials for elliptical, rectangular, and square apertures, researchers have significantly broadened the applicability of Zernike polynomials. Domestically, Chinese researchers have made significant contributions by generating orthogonal polynomials for non-circular apertures and studying the impact of sampling points on fitting accuracy. This research has enhanced the precision of Zernike polynomials in surface characterization, with applications including wavefront reconstruction and wavefront analysis, demonstrating the versatility and accuracy of Zernike polynomials in various optical design tasks. Compared with other characterization methods such as Q-type polynomials and XY polynomials, Zernike polynomials stand out for their high precision and flexibility, though combining these methods can further enhance the accuracy and efficiency of surface characterization. The manuscript suggests future research should focus on continued theoretical advancements, improved computational efficiency, and integration with other polynomial methods. These improvements will expand the application range and precision of Zernike polynomials in optical system design and optimization, driving progress in optical technology. Continued research and innovation in this field will further enhance the accuracy and efficiency of surface characterization, making Zernike polynomials an increasingly important tool in the advancement of optical systems.
-
表 1 常见表征函数优劣性比较
Table 1. Comparison of common characterization functions: advantages and disadvantages
曲面表征函数与方法 优势 缺点 Zernike多项式 正交,与经典相差一一对应,解析波前等 对局部凸起难以精确表征,高阶项计算复杂 Q型正交多项式 正交,加工可控性强,适合表征全局特性等 高阶计算复杂,尚未广泛集成到计算机软件当中 XY多项式 设计自由度高,适合表征全局特性等 非正交,不可解析波前 径向基函数 局部表征能力强 非正交 NURBS函数 局部表征能力强,构造灵活 非正交,构造复杂 表 2 Zernike多项式前9项与像差对应关系[5]
Table 2. Correspondence between the first 9 Zernike polynomials and optical aberrations[5]
项数 Zernike多项式 像差 Z1 1 平移 Z2 $ \rho \mathrm{c}\mathrm{o}\mathrm{s}\left(\theta \right) $ X轴倾斜 Z3 $ \rho \mathrm{s}\mathrm{i}\mathrm{n}\left(\theta \right) $ Y轴倾斜 Z4 $ {\rho }^{2}\mathrm{c}\mathrm{o}\mathrm{s}2\theta $ 初级像散 ($ 0\text{° }\text{或 90}\text{°}\text{轴)} $ Z5 $ 2{\rho }^{2}-1 $ 离焦 Z6 $ {\rho }^{2}\mathrm{s}\mathrm{i}\mathrm{n}2\theta $ 初级像散 ($ \pm {45}^{\circ } $轴) Z7 $ {\rho }^{3}\mathrm{c}\mathrm{o}\mathrm{s}3\theta $ 初级三叶草 (X-轴) Z8 $ \left(3{\rho }^{3}-2\rho \right)\mathrm{c}\mathrm{o}\mathrm{s}\theta $ 初级慧差 (X-轴) Z9 $ \left(3{\rho }^{3}-2\rho \right)\mathrm{s}\mathrm{i}\mathrm{n}\theta $ 初级慧差 (Y-轴) -
[1] 杨通, 段璎哲, 程德文, 等. 自由曲面成像光学系统设计: 理论、发展与应用[J]. 光学学报, 2021, 41(1): 0108001. doi: 10.3788/AOS202141.0108001
Yang T, Duan Y Z, Cheng D W, et al. Freeform imaging optical system design: theories, development, and applications[J]. Acta Opt Sin, 2021, 41(1): 0108001. doi: 10.3788/AOS202141.0108001
[2] 程德文, 陈海龙, 王涌天, 等. 复杂光学曲面数理描述和设计方法研究[J]. 光学学报, 2023, 43(8): 0822008. doi: 10.3788/AOS221980
Cheng D W, Chen H L, Wang Y T, et al. Mathematical description and design methods of complex optical surfaces[J]. Acta Opt Sin, 2023, 43(8): 0822008. doi: 10.3788/AOS221980
[3] Niu K, Tian C. Zernike polynomials and their applications[J]. J Opt, 2022, 24(12): 123001. doi: 10.1088/2040-8986/ac9e08
[4] 杨华峰, 姜宗福. 对Zernike模式法重构19单元哈特曼测量波前的研究[J]. 激光技术, 2005, 29 (5): 484–487.
Yang H F, Jiang Z F. Research of Zernike modal wavefront reconstruction of 19-element Hartmann-Shack wavefront sensor[J]. Laser Technol 2005, 29 (5): 484–487.
[5] 王超. 自由曲面表征函数及其应用研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2014.
Wang C. Research on characterization function and application of free-form surface[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2014.
[6] 叶井飞, 高志山, 刘晓莉, 等. 基于Zernike多项式和径向基函数的自由曲面重构方法[J]. 光学学报, 2014, 34(8): 0822003. doi: 10.3788/AOS201434.0822003
Ye J F, Gao Z S, Liu X L, et al. Freeform surfaces reconstruction based on Zernike polynomials and radial basis function[J]. Acta Opt Sin, 2014, 34(8): 0822003. doi: 10.3788/AOS201434.0822003
[7] 杨通, 王永东, 吕鑫, 等. 融合自由曲面光学与全息光学元件的成像与显示系统设计[J]. 光学学报, 2024, 44(9): 0900001. doi: 10.3788/AOS231830
Yang T, Wang Y D, Lü X, et al. Design of Imaging and display systems combining freeform optics and holographic optical elements[J]. Acta Opt Sin, 2024, 44(9): 0900001. doi: 10.3788/AOS231830
[8] 郎常富. Q-Type自由曲面优化设计与制造的约束条件研究[D]. 长春: 长春理工大学, 2022.
Lang C F. Studies on constraints of optimal design and manufacturing of Q-Type freeform surface[D]. Changchun: Changchun University of Science and Technology, 2022.
[9] Forbes G W. Robust and fast computation for the polynomials of optics[J]. Opt Express, 2010, 18(13): 13851−13862. doi: 10.1364/OE.18.013851
[10] 叶井飞. 光学自由曲面的表征方法与技术研究[D]. 南京: 南京理工大学, 2016.
Ye J F. Research on the method and technique for characterizing freeform optical surface[D]. Nanjing: Nanjing University of Science & Technology, 2016.
[11] Mahajan V N, Aftab M. Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts[J]. Appl Opt, 2010, 49(33): 6489−6501. doi: 10.1364/AO.49.006489
[12] Kaya I, Thompson K P, Rolland J P. Edge clustered fitting grids for φ-polynomial characterization of freeform optical surfaces[J]. Opt Express, 2011, 19(27): 26962−26974. doi: 10.1364/OE.19.026962
[13] Svechnikov M V, Chkhalo N I, Toropov M N, et al. Resolving capacity of the circular Zernike polynomials[J]. Opt Express, 2015, 23(11): 14677−14694. doi: 10.1364/OE.23.014677
[14] Mahajan V N. Zernike annular polynomials and optical aberrations of systems with annular pupils[J]. Appl Opt, 1994, 33(34): 8125−8127. doi: 10.1364/AO.33.008125
[15] Mahajan V N, Dai G M. Orthonormal polynomials for hexagonal pupils[J]. Opt Lett, 2006, 31(16): 2462−2464. doi: 10.1364/OL.31.002462
[16] Mahajan V N, Dai G M. Orthonormal polynomials in wavefront analysis: analytical solution[J]. J Opt Soc Am A, 2007, 24(9): 2994−3016. doi: 10.1364/JOSAA.24.002994
[17] Dai G M, Mahajan V N. Orthonormal polynomials in wavefront analysis: error analysis[J]. Appl Opt, 2008, 47(19): 3433−3445. doi: 10.1364/AO.47.003433
[18] Ferreira C, López J L, Navarro R, et al. Orthogonal basis with a conicoid first mode for shape specification of optical surfaces[J]. Opt Express, 2016, 24(5): 5448−5462. doi: 10.1364/OE.24.005448
[19] Broemel A, Lippmann U, Gross H. Freeform surface descriptions. Part I: mathematical representations[I]. Adv Opt Technol, 2017, 6 (5): 327–336. https://doi.org/10.1515/aot-2017-0030.
[20] Area I, Dimitrov D K, Godoy E. Recursive computation of generalised Zernike polynomials[J]. J Comput Appl Math, 2017, 312: 58−64. doi: 10.1016/j.cam.2015.11.017
[21] Ares M, Royo S. Comparison of cubic B-spline and Zernike-fitting techniques in complex wavefront reconstruction[J]. Appl Opt, 2006, 45(27): 6954−6964. doi: 10.1364/AO.45.006954
[22] Kaya I, Thompson K P, Rolland J P. Comparative assessment of freeform polynomials as optical surface descriptions[J]. Opt Express, 2012, 20(20): 22683−22691. doi: 10.1364/OE.20.022683
[23] Rahbar K, Faez K, Kakhki E A. Phase wavefront aberration modeling using Zernike and pseudo-Zernike polynomials[J]. J Opt Soc Am A, 2013, 30(10): 1988−1993. doi: 10.1364/JOSAA.30.001988
[24] Trevino J P, Gómez‐Correa J E, Iskander D R, et al. Zernike vs. Bessel circular functions in visual optics[J]. Ophthalmic Physiol Opt, 2013, 33(4): 394−402. doi: 10.1111/opo.12065
[25] Badar I, Hellmann C, Wyrowski F. Wavefront phase representation by Zernike and spline models: a comparison[J]. J Opt Soc Am A, 2021, 38(8): 1178−1186. doi: 10.1364/JOSAA.427519
[26] Raasch T W, Su L J, Yi A. Whole-surface characterization of progressive addition lenses[J]. Optom Vis Sci, 2011, 88(2): E217−E226. doi: 10.1097/OPX.0b013e3182084807
[27] Ivanova T V, Zavgorodniĭ D S. Zernike-polynomial description of the deformation of a known surface profile with a noncircularly symmetric shape[J]. J Opt Technol, 2021, 88(1): 8−13. doi: 10.1364/JOT.88.000008
[28] Omidi P, Cayless A, Langenbucher A. Evaluation of optimal Zernike radial degree for representing corneal surfaces[J]. PLoS One, 2022, 17(5): e0269119. doi: 10.1371/journal.pone.0269119
[29] Puentes G, Minotti F. Spectral characterization of optical aberrations in fluidic lenses[J]. Front Phys, 2024, 11: 1299393. doi: 10.3389/FPHY.2023.1299393
[30] Li X Y, Jiang W H. Modal description of wavefront aberration in non-circle apertures[J]. Chin J Lasers, 2002, B11(4): 259−266.
[31] 王庆丰, 程德文, 王涌天. 双变量正交多项式描述光学自由曲面[J]. 光学学报, 2012, 32(9): 0922002. doi: 10.3788/AOS201232.0922002
Wang Q F, Cheng D W, Wang Y T. Description of free-form optical curved surface using two-variable orthogonal polynomials[J]. Acta Opt Sin, 2012, 32(9): 0922002. doi: 10.3788/AOS201232.0922002
[32] 李萌阳, 李大海, 王琼华, 等. 用方形区域内的标准正交多项式重构波前[J]. 中国激光, 2012, 39(11): 1108011. doi: 10.3788/CJL201239.1108011
Li M Y, Li D H, Wang Q H, et al. Wavefront reconstruction with orthonormal polynomials in a Square Area[J]. Chin J Lasers, 2012, 39(11): 1108011. doi: 10.3788/CJL201239.1108011
[33] 赵齐, 王允, 王平, 等. 波面重构中非圆域Zernike正交基底构造方法[J]. 光学技术, 2017, 43(3): 228−233. doi: 10.13741/j.cnki.11-1879/o4.2017.03.008
Zhao Q, Wang Y, Wang P, et al. Construction method of non-circular pupil Zernike orthogonal basis in wavefront reconstruction[J]. Opt Tech, 2017, 43(3): 228−233. doi: 10.13741/j.cnki.11-1879/o4.2017.03.008
[34] 鄢静舟, 雷凡, 周必方, 等. 用Zernike多项式进行波面拟合的几种算法[J]. 光学 精密工程, 1999, 7(5): 119−128. doi: 10.3321/j.issn:1004-924X.1999.05.020
Yan J Z, Lei F, Zhou B F, et al. Algorithms for wavefront fitting using Zernike polynomial[J]. Opt Precis Eng, 1999, 7(5): 119−128. doi: 10.3321/j.issn:1004-924X.1999.05.020
[35] 莫卫东. Zernike多项式拟合干涉面方法研究[J]. 高速摄影与光子学, 1991, 20(4): 389−396.
Mo W D. The reseach into the method to fit interferogram with Zernike polynomials[J]. High Speed Photog Photonics, 1991, 20(4): 389−396.
[36] 莫卫东. Zernike多项式拟合干涉波面的基本原则[J]. 空军工程大学学报(自然科学版), 2002, 3(3): 35−38. doi: 10.3969/j.issn.1009-3516.2002.03.010
Mo W D. The principle of fitting Interferogram with Zernike polynomials[J]. J Air Force Eng Univ (Nat Sci Ed), 2002, 3(3): 35−38. doi: 10.3969/j.issn.1009-3516.2002.03.010
[37] 张伟, 刘剑峰, 龙夫年, 等. 基于Zernike多项式进行波面拟合研究[J]. 光学技术, 2005, 31(5): 675−678. doi: 10.3321/j.issn:1002-1582.2005.05.006
Zhang W, Liu J F, Long F N, et al. Study on wavefront fitting using Zernike polynomials[J]. Opt Tech, 2005, 31(5): 675−678. doi: 10.3321/j.issn:1002-1582.2005.05.006
[38] 孙学真, 苏显渝, 荆海龙. 抽样点对基于Zernike多项式曲面拟合精度的影响[J]. 光学仪器, 2008, 30(4): 6−10. doi: 10.3969/j.issn.1005-5630.2008.04.002
Sun X Z, Su X Y, Jing H L. The influence of sampling points on the precision of curved surface fitting based on Zernike polynomials[J]. Opt Instrum, 2008, 30(4): 6−10. doi: 10.3969/j.issn.1005-5630.2008.04.002
[39] 谢苏隆. Zernike多项式拟合曲面中拟合精度与采样点数目研究[J]. 应用光学, 2010, 31(6): 943−949. doi: 10.3969/j.issn.1002-2082.2010.06.015
Xie S L. Sampling point number in curved surface fitting with Zernike polynomials[J]. J Appl Opt, 2010, 31(6): 943−949. doi: 10.3969/j.issn.1002-2082.2010.06.015
[40] 冯婕, 白瑜, 邢廷文. Zernike多项式波面拟合精度研究[J]. 光电技术应用, 2011, 26(2): 31−34. doi: 10.3969/j.issn.1673-1255.2011.02.009
Feng J, Bai Y, Xing T W. Fitting accuracy of wavefront using Zernike polynomials[J]. Electro-Opt Technol Appl, 2011, 26(2): 31−34. doi: 10.3969/j.issn.1673-1255.2011.02.009
[41] 郭良贤, 卫俊杰, 唐培. Zernike圆域多项式镜面拟合仿真与精度研究[J]. 光学与光电技术, 2018, 16(6): 56−62. doi: 10.19519/j.cnki.1672-3392.2018.06.010
Guo L X, Wei J J, Tang P. Fitting simulation and precision of mirror surface with Zernike circular polynomial[J]. Opt Optoelectron Technol, 2018, 16(6): 56−62. doi: 10.19519/j.cnki.1672-3392.2018.06.010
[42] 韩路, 田爱玲, 聂凤明, 等. Zernike多项式的条纹反射三维面形重建算法研究[J]. 西安工业大学学报, 2019, 39(2): 137−144. doi: 10.16185/j.jxatu.edu.cn.2019.02.003
Han L, Tian A L, Nie F M, et al. Algorithm for three-dimensional surface reconstruction of fringe reflection using Zernike polynomial[J]. J Xi'an Technol Univ, 2019, 39(2): 137−144. doi: 10.16185/j.jxatu.edu.cn.2019.02.003
[43] 魏学业, 俞信. 一种基于Zernike多项式的波前探测和重构方法[J]. 光学学报, 1994, 14(7): 718−723. doi: 10.3321/j.issn:0253-2239.1994.07.011
Wei X Y, Yu X. An optical wavefront seuing and reconstruction method based on Zernike polynomials[J]. Acta Opt Sin, 1994, 14(7): 718−723. doi: 10.3321/j.issn:0253-2239.1994.07.011
[44] 张强, 姜文汉, 许冰. 利用Zernike多项式对湍流波前进行波前重构[J]. 光电工程, 1998, 25(6): 15−19.
Zhang Q, Jiang W H, Xu B. Reconstruction of turbulent optical wavefront realized by Zernike polynomial[J]. Opto-Electron Eng, 1998, 25(6): 15−19.
[45] 罗智锋, 陈怀新, 丁磊. 利用Zernike法进行激光小尺度畸变波前的重构[J]. 激光杂志, 2006, 27(3): 35−36. doi: 10.3969/j.issn.0253-2743.2006.03.015
Luo Z F, Chen H X, Ding L. Wavefront measurement and reconstruction of small phase-distortion on laser beam[J]. Laser J, 2006, 27(3): 35−36. doi: 10.3969/j.issn.0253-2743.2006.03.015
[46] 张航, 陆建东, 刘锐, 等. 基于Zernike多项式光滑优化的均匀方斑透镜设计[J]. 激光与光电子学进展, 2018, 55(10): 102202. doi: 10.3788/LOP55.102202
Zhang H, Lu J D, Liu R, et al. Design of uniform square spot Lens based on smooth optimization of Zernike polynomials[J]. Laser Optoelectron Prog, 2018, 55(10): 102202. doi: 10.3788/LOP55.102202
[47] 杨德荃, 陶彦辉, 赵刚练, 等. 基于神经网络的大气湍流退化图像的快速仿真[J]. 航天返回与遥感, 2023, 44(6): 57−67. doi: 10.3969/j.issn.1009-8518.2023.06.006
Yang D Q, Tao Y H, Zhao G L, et al. Rapid simulation of atmospheric turbulence degradation images based on neural networks[J]. Spacecr Recovery Remote Sens, 2023, 44(6): 57−67. doi: 10.3969/j.issn.1009-8518.2023.06.006
[48] 莫卫东. 数字平面检测系统误差和精度评价方法的研究[J]. 光学学报, 2003, 23(7): 879−883. doi: 10.3321/j.issn:0253-2239.2003.07.023
Mo W D. Error and precision evaluation of a system for Inspecting surface of optical plane[J]. Acta Opt Sin, 2003, 23(7): 879−883. doi: 10.3321/j.issn:0253-2239.2003.07.023
[49] 杨佳文, 黄巧林, 韩友民. Zernike多项式在拟合光学表面面形中的应用及仿真[J]. 航天返回与遥感, 2010, 31(5): 49−55. doi: 10.3969/j.issn.1009-8518.2010.05.009
Yang J W, Huang Q L, Han Y M. Application and simulation in fitting optical surface with Zernike polynomial[J]. Spacecr Recovery Remote Sens, 2010, 31(5): 49−55. doi: 10.3969/j.issn.1009-8518.2010.05.009
[50] 庞志海, 樊学武, 马臻, 等. 自由曲面校正光学系统像差的研究[J]. 光学学报, 2016, 36(5): 0522001. doi: 10.3788/AOS201636.0522001
Pang Z H, Fan X W, Ma Z, et al. Free-form optical elements corrected aberrations of optical system[J]. Acta Opt Sin, 2016, 36(5): 0522001. doi: 10.3788/AOS201636.0522001
[51] 关姝, 王超, 佟首峰, 等. 空间激光通信离轴两镜反射望远镜自由曲面光学天线设计[J]. 红外与激光工程, 2017, 46(12): 1205002. doi: 10.3788/IRLA201746.1222003
Guan S, Wang C, Tong S F, et al. Optical antenna design of off-axis two-mirror reflective telescope with freeform surface for space laser communication[J]. Infrared Laser Eng, 2017, 46(12): 1205002. doi: 10.3788/IRLA201746.1222003
[52] Xiang B B, Wang C S, Lian P Y. Effect of surface error distribution and aberration on electromagnetic performance of a reflector antenna[J]. Int J Antennas Propagation, 2019, 2019: 5062545. doi: 10.1155/2019/5062545
[53] 施胤成, 闫怀德, 宫鹏, 等. 基于Zernike系数优化模型的光学反射镜支撑结构拓扑优化设计方法[J]. 光子学报, 2020, 49(6): 0622001. doi: 10.3788/gzxb20204906.0622001
Shi Y C, Yan H D, Gong P, et al. Topology optimization design method for supporting structures of optical reflective mirrors based on Zernike coefficient optimization model[J]. Acta Photonica Sin, 2020, 49(6): 0622001. doi: 10.3788/gzxb20204906.0622001
[54] 周颋, 郝群, 胡摇, 等. 用于自由曲面部分补偿干涉测量的可变形镜面形设计的优化方法[J]. 光学技术, 2021, 47(3): 257−264. doi: 10.13741/j.cnki.11-1879/o4.2021.03.001
Zhou T, Hao Q, Hu Y, et al. An optimization method of deformable mirror shape design for freeform surface partial compensation interferometry[J]. Opt Tech, 2021, 47(3): 257−264. doi: 10.13741/j.cnki.11-1879/o4.2021.03.001
[55] 闫钧华, 胡子佳, 朱德燕, 等. 基于自由曲面的紧凑型离轴三反无焦系统设计[J]. 光子学报, 2022, 51(5): 0511002. doi: 10.3788/gzxb20225105.0511002
Yan J H, Hu Z J, Zhu D Y, et al. Design of compact off-axis three-mirror afocal system based on freeform surface[J]. Acta Photonica Sin, 2022, 51(5): 0511002. doi: 10.3788/gzxb20225105.0511002
[56] 解博夫, 赵星, 陶诗诗, 等. 自由曲面补偿飞秒激光成丝系统像差的应用[J]. 光学学报, 2023, 43(8): 0822020. doi: 10.3788/AOS221720
Xie B F, Zhao X, Tao S S, et al. Application of freeform surface in aberration compensation of femtosecond laser filamentation system[J]. Acta Opt Sin, 2023, 43(8): 0822020. doi: 10.3788/AOS221720
[57] 韩继周, 赵世家, 冯安伟, 等. 基于自由曲面的紧凑型宽波段成像光谱仪设计[J]. 光学学报, 2023, 43(14): 1422002. doi: 10.3788/AOS230474
Han J Z, Zhao S J, Feng A W, et al. Design of compact and broadband imaging spectrometer based on free-form surface[J]. Acta Opt Sin, 2023, 43(14): 1422002. doi: 10.3788/AOS230474
[58] 张强, 吕百达, 姜文汉. 环形区域上Zernike模式法波前重构[J]. 强激光与粒子束, 2000, 12(3): 306−310.
Zhang Q, Lü B D, Jiang W H. Zernike model wavefront reconstruction for annular field[J]. High Power Laser Part Beams, 2000, 12(3): 306−310.
[59] 王奇涛, 佟首峰, 徐友会. 采用Zernike多项式对大气湍流相位屏的仿真和验证[J]. 红外与激光工程, 2013, 42(7): 1907−1911. doi: 10.3969/j.issn.1007-2276.2013.07.046
Wang Q T, Tong S F, Xu Y H. On simulation and verification of the atmospheric turbulent phase screen with Zernike polynomials[J]. Infrared Laser Eng, 2013, 42(7): 1907−1911. doi: 10.3969/j.issn.1007-2276.2013.07.046
[60] 吴加丽, 柯熙政. 无波前传感器的自适应光学校正[J]. 激光与光电子学进展, 2018, 55(3): 030103. doi: 10.3788/LOP55.030103
Wu J L, Ke X Z. Adaptive optics correction of wavefront sensorless[J]. Laser Optoelectron Prog, 2018, 55(3): 030103. doi: 10.3788/LOP55.030103
[61] 张慧敏, 李新阳. 大气湍流畸变相位屏的数值模拟方法研究[J]. 光电工程, 2006, 33(1): 14−19. doi: 10.3969/j.issn.1003-501X.2006.01.004
Zhang H M, Li X Y. Numerical simulation of wavefront phase screen distorted by atmospheric turbulence[J]. Opto-Electron Eng, 2006, 33(1): 14−19. doi: 10.3969/j.issn.1003-501X.2006.01.004