高精度相位式激光雷达测距系统的设计

李岸然,邵光存,靳凤宇,等. 高精度相位式激光雷达测距系统的设计[J]. 光电工程,2024,51(3): 230246. doi: 10.12086/oee.2024.230246
引用本文: 李岸然,邵光存,靳凤宇,等. 高精度相位式激光雷达测距系统的设计[J]. 光电工程,2024,51(3): 230246. doi: 10.12086/oee.2024.230246
Li A A R, Shao G C, Jin F Y, et al. Design of high precision phase laser radar ranging system[J]. Opto-Electron Eng, 2024, 51(3): 230246. doi: 10.12086/oee.2024.230246
Citation: Li A A R, Shao G C, Jin F Y, et al. Design of high precision phase laser radar ranging system[J]. Opto-Electron Eng, 2024, 51(3): 230246. doi: 10.12086/oee.2024.230246

高精度相位式激光雷达测距系统的设计

详细信息
    作者简介:
    *通讯作者: 蔡恩林,caienlin@qdu.edu.cn
  • 中图分类号: TN959.3

Design of high precision phase laser radar ranging system

More Information
  • 现代科技中,激光雷达在自动导航、工业测绘等领域扮演关键角色,但传统相位测距系统普遍存在测量精度低和结构复杂等问题。本文提出了一种新型的高精度相位式激光雷达测距系统。该系统采用激光控制同频参比的相位差检测方法,包括对激光发射和接收模块的光学结构优化,以及对接收电路的放大滤波与差分混频处理,最终制作出了一个基于AD8302的高分辨率鉴相系统。实验结果显示,该系统测量精度为毫米级别,简便实用且能满足广泛的实际应用需求。这一研究为激光雷达技术在高精度距离测量方面提供了可行的解决方案。

  • Overview: With the advent of the intelligent era, laser ranging is widely used in remote sensing, and the development and research of radar technology has been attached to great importance in the world. Phase ranging is one of the most favourite ranging ways at present, and the phase LiDAR ranging technology has a wide application prospect in modern science and technology, especially in the fields of automatic driving, robot navigation, three-dimensional mapping and so on. Compared with traditional ranging methods, phase LiDAR ranging technology can achieve higher accuracy and resolution. However, despite significant progress in phase LiDAR ranging technology, there are still some not solved troubles. For example, the measurement accuracy and performance stability problems in complex environments, and the cost of high-precision phase ranging systems is usually higher, which restricts its widespread application in certain fields. The objective of this study is to design and develop a high-precision phase LiDAR ranging system. To improve the measurement accuracy and stability of phase ranging and reduce the cost of the laser ranging system. Firstly, Based on the principle of phase laser ranging, the transmitting and receiving parts of the optical system are designed and selected to ensure the stable transmission and reception of the laser. Then the receiver circuit of the hardware system is processed with signal amplification, filtering and mixing structure. In the case of large high-frequency phase discrimination errors, the method of mixed-frequency phase identification is used to improve the accuracy of the system. Finally, The AD8302 module is used as a foundation to improve the measurement accuracy of the system, simplify the hardware design of the system, and reduce the need for traditional complex signal processing algorithms. At the same instant, the technology of multi-ruler joint measurement is adopted. The high precision advantage of high frequency is used to improve the accuracy of the measured distance, and the wide range advantage of low frequency is used to expand the range of the measured distance to meet the long-distance requirements of high precision. Through the performance evaluation of the system, the system meets the design requirements. The experimental result manifests that the measurement system not only has high measurement accuracy and strong stability, but also reduces the complexity and cost of the system and meets the practical application requirements.

  • 加载中
  • 图 1  相位激光测距原理

    Figure 1.  Principle of phase laser ranging

    图 2  相位式激光测距系统框图

    Figure 2.  Block diagram of phase laser ranging system

    图 3  APD探测原理框图

    Figure 3.  APD detection principle block diagram

    图 4  接收光学系统图

    Figure 4.  Receiving optical system diagram

    图 5  LT5560混频器电路图

    Figure 5.  LT5560 mixer circuit diagram

    图 6  AD8302方案框图

    Figure 6.  Block diagram of AD8302 scheme

    图 7  系统测距实验装置图

    Figure 7.  System-ranging experimental device diagram

    图 8  示波器中采集的系统中关键信号。(a)主振信号;(b)本振信号;(c)差频回波信号

    Figure 8.  Key signals in the system collected from the oscilloscope. (a) Main oscillator signal ; (b) Local oscillator signal; (c) Differential frequency echo signal

    表 1  国外主要测距仪器参数列表

    Table 1.  List of main distance measuring instrument parameters abroad

    外观图
    生产厂家Velodyne LiDARLeica ScanStationLuminar Technologies
    所在国美国瑞士美国
    仪器型号HDL-64ELeica ScanStation C10Luminar Iris
    测距方式相位式相位式相位式
    激光波段/nm700~1550700~15501550
    激光等级Class 1Class 3Class 1
    测程/m100~200134~300250~500
    扫描速度/(103points/second)700~140050122
    距离不确定度(k=2)<1 mm@25 m<2.5 mm@15 m<3 cm@280 m
    下载: 导出CSV

    表 2  测尺长度和测尺精度表

    Table 2.  Scale length and accuracy table

    频率长度/m精确度/m
    100 Hz1.50.001
    10 Hz150.01
    1 Hz1500.1
    100 kHz15001
    10 kHz1500010
    下载: 导出CSV

    表 3  25 ℃下HSLD650-5的光电特性

    Table 3.  Photoelectric characteristics of HSLD650-5 at 25 ℃

    性能参数符号工作条件最小值最大值单位
    峰值波长λpPo=10 mW--nm
    阈值电流Ith--30mA
    工作电流IopPo=10 mW-40mA
    工作电压VopPo=10 mW-2.5V
    PD监控电流ImPo=10 mW,VRD=5 V0.050.3mA
    平行发散角θPo=10 mW610deg
    垂直发散角θPo=10 mW3036deg
    下载: 导出CSV

    表 4  0.3 m到3 m内的测量结果

    Table 4.  Measurement results within 0.3 m to 3 m

    标准值/m测量均值/m测量误差/mm标准差/mm
    0.3000.3011.0000.690
    0.6000.6022.0000.678
    0.9000.9011.0000.734
    1.2001.2022.0000.670
    1.5001.5033.0000.722
    1.8001.8022.0000.740
    2.1002.1022.0000.664
    2.4002.4033.0000.680
    2.7002.7033.0000.696
    3.0003.0044.0000.682
    下载: 导出CSV

    表 5  3 m到100 m内的测量结果

    Table 5.  Measurement results within 3 m to 100 m

    标准值/m测量均值/m测量误差/mm标准差/mm
    3.0003.0044.0000.682
    13.00013.0044.0000.693
    23.00023.0055.0000.684
    33.00033.0066.0000.658
    43.00043.0099.0000.747
    53.00053.0077.0000.772
    63.00063.0099.0000.733
    73.00073.0099.0000.668
    83.00083.01010.0000.692
    93.00093.0088.0000.616
    100.00099.99010.0000.720
    下载: 导出CSV
  • [1]

    Killinger D K, Menyuk N. Laser remote sensing of the atmosphere[J]. Science, 1987, 235(4784): 37−45. doi: 10.1126/science.235.4784.37

    [2]

    Tsai B M, Gardner C S. Remote sensing of sea state using laser altimeters[J]. Appl Opt, 1982, 21(21): 3932−3940. doi: 10.1364/AO.21.003932

    [3]

    Moeller C, Schmidt H C, Koch P, et al. Real time pose control of an industrial robotic system for machining of large scale components in aerospace industry using laser tracker system[J]. SAE Int J Aerosp, 2017, 10(2): 100−108. doi: 10.4271/2017-01-2165

    [4]

    Jung J, Yoon S, Ju S, et al. Development of kinematic 3D laser scanning system for indoor mapping and as-built BIM using constrained SLAM[J]. Sensors, 2015, 15(10): 26430−26456. doi: 10.3390/s151026430

    [5]

    Kim J, Cho H, Kim S. Positioning and driving control of fork-type automatic guided vehicle with laser navigation[J]. Int J Fuzzy Logic Intell Syst, 2013, 13(4): 307−314. doi: 10.5391/IJFIS.2013.13.4.307

    [6]

    Bergstrand E. The geodimeter system: a short discussion of its principal function and future development[J]. J Geophys Res, 1960, 65(2): 404−409. doi: 10.1029/JZ065i002p00404

    [7]

    Wyant J C. Testing aspherics using two-wavelength holography[J]. Appl Opt, 1971, 10(9): 2113−2118. doi: 10.1364/AO.10.002113

    [8]

    De Groot P, Kishner S. Synthetic wavelength stabilization for two-color laser-diode interferometry[J]. Appl Opt, 1991, 30(28): 4026−4033. doi: 10.1364/AO.30.004026

    [9]

    Desai V D, Ferrario J L, Bentley J L, et al. Portable laser range finder and digital compass assembly: 5, 831, 718[P]. 1998-11-03.

    [10]

    Seidel R W. From glow to flow: a history of military laser research and development[J]. Hist Stud Phys Biol Sci, 1987, 18(1): 111−147. doi: 10.2307/27757598

    [11]

    王选钢. 高速高精度相位式激光测量关键技术研究[D]. 北京: 中国科学院研究生院, 2012.

    Wang X G. Research on Key Technologies of high-speed and high-precision phase-shift laser rangefinder[D]. Beijing: Graduate School of the Chinese Academy of Sciences, 2012.

    [12]

    杨宏兴. 基于同步可调谐测尺方法的相位式激光测距技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.

    Yang H X. Phase shift laser rngge finding based on synchronous tunable measuring wavelength[D]. Harbin: Harbin Institute of Technology, 2012.

    [13]

    贾方秀. 多频调制的相位法激光测距中若干关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2010. https://doi.org/10.7666/d.D269457.

    Jia F X. Research on key technologies of phase-shift laser range finder with multi-frequency modulation[D]. Harbin: Harbin Institute of Technology, 2010. https://doi.org/10.7666/d.D269457.

    [14]

    McManamon P. Field Guide to Lidar[M]. Washington: Society of Photo-Optical Instrumentation Engineers (SPIE), 2015. https://doi.org/10.1117/3.2186106.

    [15]

    Huang J, Dong B Q. The research of phase method of laser ranging measurement system[J]. Adv Mater Res, 2012, 479481: 632–635. https://doi.org/10.4028/www.scientific.net/AMR.479-481.632.

    [16]

    Zhang C, Huang H. Design and experiment of phase laser ranging system based on MEMS mirror for scanning detection[J]. Key Eng Mater, 2015, 645–646: 1099–1104. https://doi.org/10.4028/www.scientific.net/KEM.645-646.1099.

    [17]

    傅勤毅, 周遵梅, 金鼎沸, 等. 三角波调制在激光测距中的应用研究[J]. 中国激光, 2020, 47(3): 0304006. doi: 10.3788/CJL202047.0304006

    Fu Q Y, Zhou Z M, Jin D F, et al. Triangular-wave modulation in a laser ranging system[J]. Chin J Lasers, 2020, 47(3): 0304006. doi: 10.3788/CJL202047.0304006

    [18]

    Dorsch R G, Häusler G, Herrmann J M. Laser triangulation: fundamental uncertainty in distance measurement[J]. Appl Opt, 1994, 33(7): 1306−1314. doi: 10.1364/AO.33.001306

    [19]

    Liu Y. The application and optimization of phase method in laser distance measurement[J]. J Phys Conf Ser, 2021, 1881: 022002. doi: 10.1088/1742-6596/1881/2/022002

    [20]

    Kikuta H, Iwata K, Nagata R. Distance measurement by the wavelength shift of laser diode light[J]. Appl Opt, 1986, 25(17): 2976−2980. doi: 10.1364/AO.25.002976

    [21]

    Lee W L, Wu K C, Jiang J Y, et al. A laser ranging radar transceiver with modulated evaluation clock in 65 nm CMOS technology[C]//2011 Symposium on VLSI Circuits-Digest of Technical Papers, 2011: 286–287.

    [22]

    Zhou L S, He H Y, Sun J F, et al. Phase-shift laser ranging technology based on multi-frequency carrier phase modulation[J]. Photonics, 2022, 9(9): 603. doi: 10.3390/photonics9090603

    [23]

    Poujouly S, Journet B, Placko D. Digital laser range finder: phase-shift estimation by undersampling technique[C]//25th Annual Conference of the IEEE Industrial Electronics Society, 1999, 3: 1312–1317. https://doi.org/10.1109/IECON.1999.819401.

    [24]

    Sun X B, Tan J J, Xu J, et al. Research on key technology for phase-shift laser range finder[C]//2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing, 2013: 235–237. https://doi.org/10.1109/DASC.2013.68.

    [25]

    You T, Li P J, Tong G J, et al. Development of acoustic emission high-speed data acquisition system[J]. Adv Mater Res, 2012, 433-440: 5666−5671. doi: 10.4028/www.scientific.net/AMR.433-440.5666

    [26]

    Hu P C, Yu L, Mei J T, et al. Increasing the operating distance of a phase-shift laser range-finding system by using an active reflector[J]. Opt Commun, 2015, 356: 7−11. doi: 10.1016/j.optcom.2015.07.043

    [27]

    Jia F X, Ding Z L, Yuan F. Design of intelligent receiver system for phase-shift laser range finder[J]. Proc SPIE, 2009, 7133: 71332U. doi: 10.1117/12.810485

    [28]

    Journet B A, Poujouly S. High-resolution laser rangefinder based on a phase-shift measurement method[J]. Proc SPIE, 1998, 3520: 123−132. doi: 10.1117/12.334326

  • 加载中

(9)

(5)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2023-10-07
修回日期:  2024-01-13
录用日期:  2024-01-15
刊出日期:  2024-04-05

目录

/

返回文章
返回