紧凑式离轴三反光学系统设计

蒋成斌,陈智利,王肖同,等. 紧凑式离轴三反光学系统设计[J]. 光电工程,2023,50(12): 230231. doi: 10.12086/oee.2023.230231
引用本文: 蒋成斌,陈智利,王肖同,等. 紧凑式离轴三反光学系统设计[J]. 光电工程,2023,50(12): 230231. doi: 10.12086/oee.2023.230231
Jiang C B, Chen Z L, Wang X T, et al. Design of compact off-axis triple mirror optical system[J]. Opto-Electron Eng, 2023, 50(12): 230231. doi: 10.12086/oee.2023.230231
Citation: Jiang C B, Chen Z L, Wang X T, et al. Design of compact off-axis triple mirror optical system[J]. Opto-Electron Eng, 2023, 50(12): 230231. doi: 10.12086/oee.2023.230231

紧凑式离轴三反光学系统设计

详细信息
    作者简介:
    *通讯作者: 陈智利,medichen@163.com
  • 中图分类号: TH74

Design of compact off-axis triple mirror optical system

More Information
  • 为解决地球遥感观测和星载激光雷达探测等领域对空间光学系统尺寸小型化、结构紧凑和高分辨率的要求,本文设计了一种基于Zernike自由曲面的紧凑式离轴三反系统,同时满足了长焦距、小畸变和宽工作波段的要求。该系统采用非对称、近圆形布局的离轴三反光学系统,并在第三反射镜采用了自由曲面的设计,通过在Zemax软件中设置适当的优化目标和方法,对光学系统进行设计优化。最终该系统有效焦距为800 mm,F数为4,视场角为12°×6°,畸变小于1%,工作波段覆盖可见光及近/中红外波段,在400 km轨道高度实现了1.5 m的地元分辨率(可见光)和2.5 m的地元分辨率(近红外),地面幅宽为80 km×40 km。并进行了系统像差、点列图、MTF等性能指标评估的分析与验证,结果表明该设计方案带来了高分辨率并提升了信息获取能力。

  • Overview: With the continuous development of the space remote sensing technology, the resolution, operating band and compactness of the off-axis triplex optical systems have also generated the need for improvement to meet the design objectives of high resolution, broad spectrum and lightweight and compactness. Spatial optics, as the application frontier of basic science, the resolution and field of view of spatial optical systems are crucial for obtaining high-quality images in modern remote sensing technology. To address the special needs of the space remote sensing field, this research will be devoted to achieving an optimized design for lightweight and compactness, and realizing an off-axis triple-reversal structure with a near-circular layout, in order to reduce the mass and volume of the system and provide a more practical solution for applications such as satellite-mounted LIDAR detection. In order to further enhance the resolving power and information acquisition capability of the space optical system, a design scheme is proposed in this paper, which adopts a compact off-axis triple-reflector optical system with a long focal length, small aberration and a wide operating band, and the system structure adopts an asymmetric, near-circular layout of the off-axis triple-reflector optical system, which utilizes a special triple-reflector structure construction, which has been eccentrically tilted in the field of view, and designs an optical system based on even-ordered aspheric surface. On this basis, in order to improve the imaging quality and meet the design requirements, the design method of Zernike's free surface is studied, the third reflector is optimized, and finally the system is effective for a focal length of 800 mm, an F-number of 4, a field of view of 12°×6°, an aberration less than 1%, and an operating band covering the visible and the near/mid-infrared, and a geodetic resolution of 1.5 m has been achieved at the orbit altitude of 400 km. With 1.5 m ground element resolution (visible) and 2.5 m ground element resolution (near-infrared) at an orbital altitude of 400 km, and a ground width of 80 km×40 km, the system has been analyzed and verified in terms of aberration, dot-plot, MTF, and other performance indexes. And the results show that the design scheme brings high resolution capability and information acquisition capability. The analysis results show that the design scheme successfully realizes the design objectives of high resolution, wide spectrum and lightweight and small size, and meets the design requirements with the excellent resolution capability and the information acquisition capability.

  • 加载中
  • 图 1  Cook型三反系统

    Figure 1.  Cook type three reverse system

    图 2  紧凑式结构示意图

    Figure 2.  Compact structure diagram

    图 3  同轴三反结构图[16]

    Figure 3.  Triaxial structure diagram

    图 4  理想结构示意图

    Figure 4.  Ideal structure diagram

    图 5  dbf/f与部分参数的关系[17]

    Figure 5.  Relationship between dbf/f and some parameters

    图 6  距离控制示意图

    Figure 6.  Range control diagram

    图 7  最终设计系统结构图

    Figure 7.  Final design system structure diagram

    图 8  系统可见光波段MTF图

    Figure 8.  MTF diagram of the system in visible band

    图 9  系统近红外波段MTF图

    Figure 9.  MTF diagram of near infrared band of the system

    图 10  系统中红外波段MTF图

    Figure 10.  MTF diagram of mid-infrared band of the system

    图 11  系统可见光波段点列图

    Figure 11.  System visible light band point diagram

    图 12  系统近红外波段点列图

    Figure 12.  System near infrared band point diagram

    图 13  系统中红外波段点列图

    Figure 13.  System middle infrared band point diagram

    图 14  系统畸变图

    Figure 14.  System distortion diagram

    表 1  光学系统设计参数表

    Table 1.  Table of the optical system design parameters

    指标项参数值
    焦距800 mm
    入瞳直径200 mm
    F数4
    光谱范围0.486~0.656 μm,0.78~2.5 μm,3~5 μm
    视场12°×6°
    像元尺寸可见光通道为3 μm,近红外通道为5 μm,中红外通道为17 μm
    成像要求可见光MTF(@160 lp/mm>0.2)
    近红外MTF(@100 lp/mm>0.2)
    中红外MTF(@30 lp/mm>0.2)
    下载: 导出CSV

    表 2  初始结构参数

    Table 2.  Initial structure parameter

    曲率半径/mm厚度圆锥系数
    主镜−1641.935−330−4.118
    次镜−550.510330−0.919
    三镜−828.318−730.40
    下载: 导出CSV

    表 3  初始结构的倾斜和偏心

    Table 3.  Tilt and eccentricity of the initial structure

    项目倾斜X/倾斜Y偏心X/偏心Y
    主镜±18.4°±800
    次镜±45°±565
    三镜±45°±1600
    下载: 导出CSV

    表 4  Zernike standard自由曲面系数表

    Table 4.  Zernike standard free-form surface coefficient table

    项目Z1Z2Z3Z4Z5Z6Z7
    −74.798−1.701×10−510.6740.164−4.348×10-70.0172.38×10-3
    Z8Z9Z10Z11Z12Z13Z14
    三镜−2.385×10−8−1.049×10−4−5.268×10−8−2.277×10−5−1.079×10−57.318×10−93.574×10−7
    Z15Z16Z17Z18Z19Z20
    3.034×10−95.154×10−117.969×10−77.156×10−108.6×10−98.421×10−10
    下载: 导出CSV

    表 5  误差分配表

    Table 5.  Error distribution table

    公差类别 公差项目主镜次镜三镜
    装调误差 X方向偏轴/mm0.050.20
    Y方向偏轴/mm0.050.20
    X方向倾斜/(°)0.0050.0010
    Y方向倾斜/(°)0.0050.0010
    面型误差 曲率半径/mm0.20.20.2
    波峰到波谷(PV值)/${\rm{\mu m}}$0.50.50.2
    下载: 导出CSV

    表 6  蒙特卡罗累计概率统计表

    Table 6.  Monte Carlo cumulative probability statistic

    累积概率/%弥散斑RMS/mmMTF
    900.004763420.11910409
    800.004557300.15766662
    500.003967650.18865949
    200.003232140.23130557
    100.003086280.24853763
    下载: 导出CSV
  • [1]

    Marlow W A, Carlton A K, Yoon H, et al. Laser-guide-star satellite for ground-based adaptive optics imaging of geosynchronous satellites[J]. J Spacecraft Rockets, 2017, 54(3): 621−639. doi: 10.2514/1.A33680

    [2]

    Groff T D, Zimmerman N T, Subedi H B, et al. Roman Space Telescope CGI: prism and polarizer characterization modes[J]. Proc SPIE, 2021, 11443: 114433D. doi: 10.1117/12.2562925

    [3]

    陆春玲, 白照广, 李永昌, 等. 高分六号卫星技术特点与新模式应用[J]. 航天器工程, 2021, 30(1): 7−14.

    Lu C L, Bai Z G, Li Y C, et al. Technical characteristic and new mode applications of GF-6 satellite[J]. Spacecr Eng, 2021, 30(1): 7−14.

    [4]

    Zhan H. An update on the Chinese space station telescope project[EB/OL]. (2019-11-05)[2021-09-22]. https://www.issibern.ch/teams/weakgravlense/wp-content/uploads/sites/150/2019/11/H.-Zhan.pdf.

    [5]

    韩修来, 聂亮, 任梦茹. 可见光/红外双波段离轴三反光学系统优化设计[J]. 红外, 2021, 42(8): 1−6. doi: 10.3969/j.issn.1672-8785.2021.08.001

    Han X L, Nie L, Ren M R. Optimal design of visible/infrared dual-band off-axis three-reflection optical system[J]. Infrared, 2021, 42(8): 1−6. doi: 10.3969/j.issn.1672-8785.2021.08.001

    [6]

    刘宇轩, 张冬冬, 钮新华. 多谱段推扫式离轴三反光学系统设计[J]. 光学技术, 2022, 48(2): 139−143. doi: 10.13741/j.cnki.11-1879/o4.2022.02.019

    Liu Y X, Zhang D D, Niu X H. Design of multi-spectrum push-broom optical system[J]. Opt Tech, 2022, 48(2): 139−143. doi: 10.13741/j.cnki.11-1879/o4.2022.02.019

    [7]

    魏雨. 基于自由曲面的大视场推扫式光学系统设计[D]. 西安: 西安工业大学, 2020.

    Wei Y. Design of large field of view pushover optical system based on free-form surface[D]. Xi'an: Xi'an Technological University, 2020.

    [8]

    王保华, 刘志敏, 唐绍凡, 等. 星载高分辨率红外双谱段遥感器光学系统设计[J]. 激光与红外, 2022, 52(1): 102−109. doi: 10.3969/j.issn.1001-5078.2022.01.017

    Wang B H, Liu Z M, Tang S F, et al. Optical system design of high resolution dual-band IR remote sensor[J]. Laser Infrared, 2022, 52(1): 102−109. doi: 10.3969/j.issn.1001-5078.2022.01.017

    [9]

    沈志娟. 大视场离轴三反光学系统设计[J]. 光电技术应用, 2020, 35(2): 24−27,64. doi: 10.3969/j.issn.1673-1255.2020.02.005

    Shen Z J. Design of large field of view off-axis three-mirror reflective optical system[J]. Electro-Opt Technol Appl, 2020, 35(2): 24−27,64. doi: 10.3969/j.issn.1673-1255.2020.02.005

    [10]

    杨旭, 李艳红, 张远健, 等. 基于自由曲面双波段离轴三反光学系统的优化设计[J]. 红外技术, 2022, 44(11): 1195−1202.

    Yang X, Li Y H, Zhang Y J, et al. Optimal design of dual-band off-axis three-reflection optical system based on free-form surface[J]. Infrared Technol, 2022, 44(11): 1195−1202.

    [11]

    罗秦. 大视场宽光谱推扫式光学系统研究[D]. 上海: 中国科学院大学(中国科学院上海技术物理研究所), 2017.

    Luo Q. Research on wide field and broad spectrum push-broom optical system[D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics, University of Chinese Academy of Sciences), 2017.

    [12]

    杨超, 陈宇, 于可心, 等. 多路分光星载激光雷达接收光学系统设计[J]. 长春理工大学学报(自然科学版), 2021, 44(2): 7−12.

    Yang C, Chen Y, Yu K X, et al. Designof receiving optical system for multi-channel beam-split spaceborne Lidar[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2021, 44(2): 7−12.

    [13]

    何传王, 汪利华, 黄鹏, 等. 离轴四反射镜衍射成像光学系统设计[J]. 光电工程, 2019, 46(11): 190099.

    He C W, Wang L H, Huang P, et al. Design of diffractive imaging optical system based on off-axis four-mirror[J]. Opto-Electron Eng, 2019, 46(11): 190099.

    [14]

    吴俐权. 大视场自由曲面光学系统设计及杂散光抑制技术研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2020.

    Wu L Q. Research on optical design with large field of view based on free-from surface and stray light suppression[D]. Xi'an: University of Chinese Academy of Sciences (Xi'an Institute of Optical Precision Machinery, Chinese Academy of Sciences), 2020.

    [15]

    李越强, 操超. 大视场高分辨率自由曲面成像光学系统设计[J]. 光学与光电技术, 2021, 19(6): 57−63. doi: 10.19519/j.cnki.1672-3392.2021.06.008

    Li Y Q, Cao C. Design of the freeform imaging optical system with large field of view and high resolution[J]. Opt Optoelectron Technol, 2021, 19(6): 57−63. doi: 10.19519/j.cnki.1672-3392.2021.06.008

    [16]

    张媛, 陈智利, 胡涛, 等. 宽光谱高分辨离轴三反光学系统设计[J]. 光学与光电技术, 2023, 21(1): 72−80. doi: 10.3969/j.issn.1672-3392.2023.1.gxygdjs202301009

    Zhang Y, Chen Z L, Hu T, et al. Design of telephoto off-axis three-mirror optical system[J]. Opt Optoelectron Technol, 2023, 21(1): 72−80. doi: 10.3969/j.issn.1672-3392.2023.1.gxygdjs202301009

    [17]

    Nakano T, Tamagawa Y. Configuration of an off-axis three-mirror system focused on compactness and brightness[J]. Appl Opt, 2005, 44(5): 776−783. doi: 10.1364/AO.44.000776

    [18]

    单宝忠, 王淑岩, 牛憨笨, 等. Zernike多项式拟合方法及应用[J]. 光学 精密工程, 2002, 10(3): 318−323.

    Shan B Z, Wang S Y, Niu H B, et al. Zernike polynomial fitting method and its application[J]. Opt Precision Eng, 2002, 10(3): 318−323.

    [19]

    Sun Y H, Sun Y Q, Chen X Y, et al. Design of a free-form off-axis three-mirror optical system with a low f-number based on the same substrate[J]. Appl Opt, 2022, 61(24): 7033−7040. doi: 10.1364/AO.457646

  • 加载中

(15)

(6)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2023-09-14
修回日期:  2023-11-22
录用日期:  2023-11-23
刊出日期:  2024-01-19

目录

/

返回文章
返回