电磁超表面对辐射波的调控与应用

朱潜,田翰闱,蒋卫祥. 电磁超表面对辐射波的调控与应用[J]. 光电工程,2023,50(9): 230115. doi: 10.12086/oee.2023.230115
引用本文: 朱潜,田翰闱,蒋卫祥. 电磁超表面对辐射波的调控与应用[J]. 光电工程,2023,50(9): 230115. doi: 10.12086/oee.2023.230115
Zhu Q, Tian H W, Jiang W X. Manipulations and applications of radiating waves using electromagnetic metasurfaces[J]. Opto-Electron Eng, 2023, 50(9): 230115. doi: 10.12086/oee.2023.230115
Citation: Zhu Q, Tian H W, Jiang W X. Manipulations and applications of radiating waves using electromagnetic metasurfaces[J]. Opto-Electron Eng, 2023, 50(9): 230115. doi: 10.12086/oee.2023.230115

电磁超表面对辐射波的调控与应用

  • 基金项目:
    国家自然科学基金资助项目(61890544);中央高校基础研究资助(2242023k5002)
详细信息
    作者简介:
    *通讯作者: 蒋卫祥,wxjiang81@seu.edu.cn
  • 中图分类号: TN82

Manipulations and applications of radiating waves using electromagnetic metasurfaces

  • Fund Project: Project supported by the National Natural Science Foundation of China (61890544), and the Fundamental Research Funds for the Central Universities (2242023k5002)
More Information
  • 电磁超材料由亚波长尺寸的人工单元结构周期或非周期排列组成,可以实现天然材料不具备的奇特性质。超表面作为二维特殊形式超材料,具有剖面低、易集成、低成本等优点。随着有源器件、传感元件与智能算法的引入,超表面进一步实现了对电磁波的实时可编程与智能调控。目前多数电磁超表面研究致力于反射波或透射波调控,事实上,电磁超表面对辐射波同样具有强大的调控能力。本文系统介绍电磁超表面调控辐射波幅度、相位、极化等维度的相关研究进展,以超表面与馈源的集成方式和超表面对辐射波的调控原理为分类依据,重点介绍折叠阵超表面、法布里-珀罗超表面、漏波超表面和辐射式超表面,对应空间馈电、表面波馈电、缝隙耦合馈电、同轴馈电等方式,从无源与有源两个角度介绍这四类超表面对辐射波的调控机理与应用,最后对电磁超表面调控辐射波的未来研究方向进行展望。

  • Overview: Metamaterials are composed of basic electromagnetic unit cells with sub-wavelength size. Different from natural materials, the properties of metamaterials depend mainly on the structure and arrangement of electromagnetic unit cells. This characteristic can be used to flexibly design metamaterials with unique properties such as negative permittivity, negative permeability, and negative refractive index. As the two-dimensional form of metamaterials, metasurfaces utilize the abrupt phase/amplitude generated by the sudden change of electromagnetic waves on the interface of metasurface to achieve the free control of the incident electromagnetic waves, thus having the advantages of easy design, low profile, and low loss. In recent years, the manipulation of electromagnetic waves by metasurfaces has been widely studied and applied by researchers, such as holographic imaging, radar cross section reduction, polarization conversion, absorption, etc. In practical application scenarios, such as wireless communication, broadband absorption, electromagnetic stealth, etc., metasurfaces are often required to have the ability to dynamically adjust electromagnetic waves, and achieve various functions according to specific working frequency, powers, and polarizations of incident waves. Based on such requirements, researchers have achieved dynamic regulation of metasurfaces by loading active elements on metasurfaces. Active metasurfaces can control the state of active elements through the feeding layer to achieve different phase coverage and amplitude regulation, so that metasurfaces can achieve dynamic switching between multiple functions, improve the ability to modulate electromagnetic waves, and promote the in-depth application and development of the metasurfaces in various fields. In the above work, metasurfaces mainly achieve various electromagnetic functions by regulating reflecting and transmitting waves, metasurface itself is only used as a secondary feed, and additional primary feed is needed, which not only produces overflow loss and edge attenuation, but also leads to increase in the overall profile of the system and decrease in the integration. In fact, electromagnetic metasurfaces also have the strong regulation ability for radiating waves. The feed-integrated metasurfaces solve the above problems due to its ingenious design ideas. Based on the integration of metasurfaces and feeds and the regulation principle of metasurfaces on radiating electromagnetic waves, this paper systematically introduces various types of metasurfaces and their related applications for the direct control of radiating waves from passive to active aspects, such as folded reflectarray/transmitarray metasurfaces, Fabry-Perot metasurfaces, leaky wave metasurfaces and radiation-type metasurfaces, corresponding to air feeding, surface wave feeding, gap coupling feeding, coaxial feeding. The related works of these types of feed-integrated metasurfaces are systematically introduced. Finally, the related researches in this field are summarized and prospected.

  • 加载中
  • 图 1  无源折叠式反射阵超表面原型。(a)圆极化波RCS缩减[38];(b)线极化波RCS缩减[39];(c)贝塞尔波束产生器[40];(d)艾里波束产生器[41]

    Figure 1.  Passive folded reflectarray metasurface prototype. (a) RCS reduction for CP wave[38]; (b) RCS reduction for LP wave[39]; (c) OAM beam generator[40]; (d) Airy beam generator[41]

    图 2  无源折叠式透射阵超表面。(a)圆极化折叠式透射阵超表面[42];(b)Ⅱ型透射阵构型[46]

    Figure 2.  Passive folded transmitarray metasurface. (a) Circularly-polarized folded transmitarray metasurface[42]; (b) Ⅱ-type folded transmitarray metasurface prototype[46]

    图 3  有源折叠阵超表面。(a)用于波束扫描[48];(b)实测辐射方向图;(c)用于产生OAM波束[49];(d) 2阶OAM波束近场幅度和相位分布图;(e)用于波束偏折[50];(f)仿真和实测归一化辐射方向图

    Figure 3.  Active folded metasurface. (a) Programmable folded metasurface for beam scanning[48]; (b) Measured radiation pattern; (c) Active folded metasurface for OAM beam generation[49]; (d) Near-field amplitude and phase distribution for l=+2; (e) Active folded metasurface for beam steering[50]; (f) Simulated and measured normalized radiation patterns

    图 4  无源F-P超表面。(a)低散射F-P编码超表面[51];(b) RCS缩减F-P超表面[52];(c) F-P超表面实现二维全息成像[53];(d) F-P超表面实现双圆极化辐射[54]

    Figure 4.  Passive F-P metasurface. (a) Low-scattering F-P coding metasurface[51]; (b) F-P metasurface for RCS reduction[52]; (c) F-P metasurface for 2D holographic imaging[53]; (d) F-P metasurface for dual circularly polarized radiation[54]

    图 5  有源F-P超表面。(a)频率可重构F-P超表面[55];(b)双频段可重构F-P超表面[56];(c)带内RCS缩减F-P超表面[57];(d)散射方向图可重构F-P超表面[58]

    Figure 5.  Active F-P metasurface. (a) Frequency reconfigurable F-P metasurface[55]; (b) Dual-band reconfigurable F-P metasurface[56]; (c) F-P metasurface for in-band RCS reduction[57]; (d) Reconfigurable scattering patterns F-P metasurface[58]

    图 6  无源漏波超表面。(a)大角度均匀漏波超表面[59];(b)多层均匀漏波超表面[60];(c)双功能全息超表面[66];(d)复用张量全息超表面[67]

    Figure 6.  Passive leaky-wave metasurface. (a) Wide-angle uniform leaky-wave metasurface[59]; (b) Multilayer uniform leaky-wave metasurface[60]; (c) Dual-functional holographic metasurface[66]; (d) Multiplexing tensor holographic metasurface[67]

    图 7  有源漏波型超表面。(a)无边带辐射漏波型超表面[68];(b)基频波束扫描;(c)多谐波独立调控;(d)动态近场聚焦全息超表面[69];(e)动态波束全息超表面[70]

    Figure 7.  Active leaky-wave metasurface. (a) Sideband-free leaky-wave metasurface[68]; (b) Fundamental-frequency beam scanning; (c) Multi-harmonic independent control; (d) Dynamic near-field focusing holographic metasurface[69]; (e) Dynamic beam holographic metasurface[70]

    图 8  无源辐射式超表面。(a)集成馈源式编码超表面[75];(b)相位和极化调制辐射式超表面[76];(c)幅度、相位和极化调制辐射式超表面[77];(d)复振幅调制辐射式超表面[79]

    Figure 8.  Passive radiation-type metasurface. (a) Integrated coding-metasurface[75]; (b) Phase- and polarization-modulated radiation-type metasurface[76]; (c) Amplitude-, phase- and polarization-modulated radiation-type metasurface[77]; (d) Complex-amplitude modulated radiation-type metasurface[79]

    图 9  有源辐射式超表面。(a)可编程辐射式超表面[80];(b)辐射和反射集成超表面[81]

    Figure 9.  Active radiation-type metasurface. (a) Programmable radiation-type metasurface[80]; (b) Radiations and reflections integrated metasurface[81]

  • [1]

    Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequency plasmons in metallic mesostructures[J]. Phys Rev Lett, 1996, 76(25): 4773−4776. doi: 10.1103/PhysRevLett.76.4773

    [2]

    Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Trans Microw Theory Techn, 1999, 47(11): 2075−2084. doi: 10.1109/22.798002

    [3]

    Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Phys Rev Lett, 2000, 84(18): 4184−4187. doi: 10.1103/PhysRevLett.84.4184

    [4]

    李雄, 马晓亮, 罗先刚. 超表面相位调控原理及应用[J]. 光电工程, 2017, 44(3): 255−275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electron Eng, 2017, 44(3): 255−275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    [5]

    Xu P, Xiao Y F, Huang H X, et al. Dual-wavelength hologram of high transmittance metasurface[J]. Opt Express, 2023, 31(5): 8110−8119. doi: 10.1364/OE.482263

    [6]

    Wang X S, Wu J L, Wang R X, et al. Reconstructing polarization multiplexing terahertz holographic images with transmissive metasurface[J]. Appl Sci, 2023, 13(4): 2528. doi: 10.3390/app13042528

    [7]

    Heidari M, Sedighy S H, Amirhosseini M K. RCS reduction using grounded multi-height multi-dielectrics metasurfaces[J]. Sci Rep, 2023, 13(1): 3069. doi: 10.1038/s41598-023-27853-4

    [8]

    Ha T D, Zhu L, Alsaab N, et al. Optically transparent metasurface radome for rcs reduction and gain enhancement of multifunctional antennas[J]. IEEE Trans Antennas Propag, 2023, 71(1): 67−77. doi: 10.1109/TAP.2022.3215247

    [9]

    Faraz Z, Kamal B, Ullah S, et al. High efficient and ultra-wideband polarization converter based on I-shaped metasurface for RCS reduction[J]. Opt Commun, 2023, 530: 129101. doi: 10.1016/J.OPTCOM.2022.129101

    [10]

    Dutta R, Mitra D, Ghosh J. Dual-band multifunctional metasurface for absorption and polarization conversion[J]. Int J RF Microw Comput Aided Eng, 2020, 30(7): e22200. doi: 10.1002/mmce.22200

    [11]

    Loncar J, Grbic A, Hrabar S. A reflective polarization converting metasurface at X-band frequencies[J]. IEEE Trans Antennas Propag, 2018, 66(6): 3213−3218. doi: 10.1109/tap.2018.2816784

    [12]

    Lin B Q, Huang W Z, Guo J X, et al. A high efficiency ultra-wideband circular-to-linear polarization conversion metasurface[J]. Opt Commun, 2023, 529: 129102. doi: 10.1016/J.OPTCOM.2022.129102

    [13]

    王金金, 朱邱豪, 董建峰. 可调谐手征超表面电磁特性研究进展[J]. 光电工程, 2021, 48(2): 200218. doi: 10.12086/oee.2021.200218

    Wang J J, Zhu Q H, Dong J F. Research progress of electromagnetic properties of tunable chiral metasurfaces[J]. Opto-Electron Eng, 2021, 48(2): 200218. doi: 10.12086/oee.2021.200218

    [14]

    Liu J Y, Duan Y P, Zhang T, et al. Dual-polarized and real-time reconfigurable metasurface absorber with infrared-coded remote-control system[J]. Nano Res, 2022, 15(8): 7498−7505. doi: 10.1007/s12274-022-4528-7

    [15]

    Ghosh S, Srivastava K V. A polarization-independent broadband multilayer switchable absorber using active frequency selective surface[J]. IEEE Antennas Wirel Propag Lett, 2017, 16: 3147−3150. doi: 10.1109/lawp.2017.2766100

    [16]

    Krasikov S, Tranter A, Bogdanov A, et al. Intelligent metaphotonics empowered by machine learning[J]. Opto-Electron Adv, 2022, 5(3): 210147. doi: 10.29026/oea.2022.210147

    [17]

    Yang Y, Zhang X H, Liu K F, et al. Complex-amplitude metasurface design assisted by deep learning[J]. Annal Phys, 2022, 534(9): 2200188. doi: 10.1002/andp.202200188

    [18]

    Yang Y, Zhang X H, Liu K F, et al. Exploring the limits of metasurface polarization multiplexing capability based on deep learning[J]. Opt Express, 2023, 31(10): 17065−17075. doi: 10.1364/OE.490002

    [19]

    Luo Z J, Ren X Y, Zhou L, et al. A high-performance nonlinear metasurface for spatial-wave absorption[J]. Adv Funct Mater, 2022, 32(16): 2109544. doi: 10.1002/adfm.202109544

    [20]

    Liang J C, Zhang L, Cheng Z W, et al. Flexible beam manipulations by reconfigurable intelligent surface with independent control of amplitude and phase[J]. Front Mater, 2022, 9: 946163. doi: 10.3389/FMATS.2022.946163

    [21]

    Zhang X G, Yu Q, Jiang W X, et al. Polarization-controlled dual-programmable metasurfaces[J]. Adv Sci, 2020, 7(11): 1903382. doi: 10.1002/advs.201903382

    [22]

    Zhang X G, Jiang W X, Cui T J. Frequency-dependent transmission-type digital coding metasurface controlled by light intensity[J]. Appl Phys Lett, 2018, 113(9): 091601. doi: 10.1063/1.5045718

    [23]

    Zhang X G, Tang W X, Jiang W X, et al. Light-controllable digital coding metasurfaces[J]. Adv Sci, 2018, 5(11): 1801028. doi: 10.1002/advs.201801028

    [24]

    Zhang X G, Jiang W X, Jiang H L, et al. An optically driven digital metasurface for programming electromagnetic functions[J]. Nat Electron, 2020, 3(3): 165−171. doi: 10.1038/s41928-020-0380-5

    [25]

    Zhang X G, Sun Y L, Yu Q, et al. Smart doppler cloak operating in broad band and full polarizations[J]. Adv Mater, 2021, 33(17): 2007966. doi: 10.1002/adma.202007966

    [26]

    Zhang X G, Sun Y L, Zhu B C, et al. A metasurface-based light-to-microwave transmitter for hybrid wireless communications[J]. Light Sci Appl, 2022, 11(1): 126. doi: 10.1038/S41377-022-00817-5

    [27]

    Chen L, Ma Q, Luo S S, et al. Touch-programmable metasurface for various electromagnetic manipulations and encryptions[J]. Small, 2022, 18(45): 2203871. doi: 10.1002/smll.202203871

    [28]

    Ke J C, Dai J Y, Zhang J W, et al. Frequency-modulated continuous waves controlled by space-time-coding metasurface with nonlinearly periodic phases[J]. Light Sci Appl, 2022, 11(1): 273. doi: 10.1038/S41377-022-00973-8

    [29]

    Wang S R, Chen M Z, Ke J C, et al. Asynchronous space-time-coding digital metasurface[J]. Adv Sci, 2022, 9(24): 2200106. doi: 10.1002/advs.202200106

    [30]

    Chen B W, Wang X R, Li W L, et al. Electrically addressable integrated intelligent terahertz metasurface[J]. Sci Adv, 2022, 8(41): eadd1296. doi: 10.1126/sciadv.add1296

    [31]

    Zhu R C, Wang J F, Fu X M, et al. Deep-learning-empowered holographic metasurface with simultaneously customized phase and amplitude[J]. ACS Appl Mater Interfaces, 2022, 14(42): 48303−48310. doi: 10.1021/ACSAMI.2C15362

    [32]

    Huang J. Bandwidth study of microstrip reflectarray and a novel phased reflectarray concept[C]//IEEE Antennas and Propagation Society International Symposium. 1995 Digest, Newport Beach, 1995: 582–585. https://doi.org/10.1109/APS.1995.530086.

    [33]

    Javor R D, Wu X D, Chang K. Design and performance of a microstrip reflectarray antenna[J]. IEEE Trans Antennas Propag, 1995, 43(9): 932−939. doi: 10.1109/8.410208

    [34]

    Abd-Elhady M, Hong W, Zhang Y. A Ka-band reflectarray implemented with a single-layer perforated dielectric substrate[J]. IEEE Antennas Wirel Propag Lett, 2012, 11(1): 600−603. doi: 10.1109/lawp.2012.2201128

    [35]

    Pilz D, Menzel W. Folded reflectarray antenna[J]. Electron Lett, 1998, 34(9): 832−833. doi: 10.1049/el:19980670

    [36]

    Jiang M, Hong W, Zhang Y, et al. A folded reflectarray antenna with a planar SIW slot array antenna as the primary source[J]. IEEE Trans Antennas Propag, 2014, 62(7): 3575−3583. doi: 10.1109/TAP.2014.2317485

    [37]

    Yang J W, Shen Y Z, Wang L N, et al. 2-D scannable 40-GHz folded reflectarray fed by SIW slot antenna in single-layered PCB[J]. IEEE Trans Microw Theory Techn, 2018, 66(6): 3129−3135. doi: 10.1109/TMTT.2018.2818698

    [38]

    Wang S J, Xu H X, Wang M Z, et al. A low-RCS and high-gain planar circularly polarized cassegrain meta-antenna[J]. IEEE Trans Antennas Propag, 2022, 70(7): 5278−5287. doi: 10.1109/TAP.2022.3161394

    [39]

    Xu J, Xu H X, Luo H L, et al. A low-RCS folded reflectarray combining dual-metasurface and rasorber[J]. IEEE Antennas Wirel Propag Lett, 2022, 21(12): 2462−2466. doi: 10.1109/LAWP.2022.3196833

    [40]

    Shen Y Z, Yang J W, Meng H F, et al. Generating millimeter-wave Bessel beam with orbital angular momentum using reflective-type metasurface inherently integrated with source[J]. Appl Phys Lett, 2018, 112(14): 141901. doi: 10.1063/1.5023327

    [41]

    Miao Z W, Hao Z C, Jin B B, et al. Low-profile 2-D THz airy beam generator using the phase-only reflective metasurface[J]. IEEE Trans Antennas Propag, 2020, 68(3): 1503−1513. doi: 10.1109/TAP.2019.2925290

    [42]

    Yang J, Chen S T, Chen M, et al. Folded transmitarray antenna with circular polarization based on metasurface[J]. IEEE Trans Antennas Propag, 2021, 69(2): 806−814. doi: 10.1109/TAP.2020.3016170

    [43]

    Li G W, Ge Y H, Chen Z Z. A compact multibeam folded transmitarray antenna at Ku-band[J]. IEEE Antennas Wirel Propag Lett, 2021, 20(5): 808−812. doi: 10.1109/LAWP.2021.3064217

    [44]

    Li T J, Wang G M, Cai T, et al. Broadband folded transmitarray antenna with ultralow-profile based on metasurfaces[J]. IEEE Trans Antennas Propag, 2021, 69(10): 7017−7022. doi: 10.1109/TAP.2021.3070679

    [45]

    Chen J H, Li G W, Ge Y H, et al. A broadband circularly polarized multi-beam folded transmitarray antenna[J]. Int J RF Microw Comput Aided Eng, 2022, 32(7): e23161. doi: 10.1002/MMCE.23161

    [46]

    Fan C, Che W Q, Yang W C, et al. A novel PRAMC-based ultralow-profile transmitarray antenna by using ray tracing principle[J]. IEEE Trans Antennas Propag, 2017, 65(4): 1779−1787. doi: 10.1109/TAP.2017.2670600

    [47]

    Li T J, Wang G M, Li H P, et al. Circularly polarized double-folded transmitarray antenna based on receiver-transmitter metasurface[J]. IEEE Trans Antennas Propag, 2022, 70(11): 11161−11166. doi: 10.1109/TAP.2022.3188532

    [48]

    Wang Z L, Ge Y H, Pu J X, et al. 1 bit electronically reconfigurable folded reflectarray antenna based on p-i-n diodes for wide-angle beam-scanning applications[J]. IEEE Trans Antennas Propag, 2020, 68(9): 6806−6810. doi: 10.1109/TAP.2020.2975265

    [49]

    Liu B Y, Wong S W, Tam K W, et al. Multifunctional orbital angular momentum generator with high-gain low-profile broadband and programmable characteristics[J]. IEEE Trans Antennas Propag, 2022, 70(2): 1068−1076. doi: 10.1109/TAP.2021.3111214

    [50]

    Li T, Wang R, Sun J W, et al. Characteristic modes-inspired polarization twisting metasurface element for 1-bit folded reflectarray[J]. IEEE Antennas Wirel Propag Lett, 2022, 21(11): 2254−2258. doi: 10.1109/LAWP.2022.3201629

    [51]

    Dai J Y, Tang W K, Yang L X, et al. Realization of multi-modulation schemes for wireless communication by time-domain digital coding metasurface[J]. IEEE Trans Antennas Propag, 2020, 68(3): 1618−1627. doi: 10.1109/TAP.2019.2952460

    [52]

    Umair H, Latef T B A, Yamada Y, et al. Tilted beam fabry–perot antenna with enhanced gain and broadband low backscattering[J]. Electronics, 2021, 10(3): 267. doi: 10.3390/electronics10030267

    [53]

    Li H, Li Y B, Shen J L, et al. Low-profile electromagnetic holography by using coding fabry-perot type metasurface with in-plane feeding[J]. Adv Opt Mater, 2020, 8(9): 1902057. doi: 10.1002/adom.201902057

    [54]

    Yang P, Yang R, Li Y C. Dual circularly polarized split beam generation by a metasurface sandwich-based fabry–pérot resonator antenna in Ku-band[J]. IEEE Antennas Wirel Propag Lett, 2021, 20(6): 933−937. doi: 10.1109/LAWP.2021.3067387

    [55]

    Long M, Jiang W, Gong S X, et al. Low-RCS frequency reconfigurable antenna with polarization conversion metasurface and phase tunable reflector[C]//2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, 2017: 1921–1922. https://doi.org/10.1109/APUSNCURSINRSM.2017.8073003.

    [56]

    Bai L, Zhang X G, Wang Q, et al. Dual-band reconfigurable metasurface-assisted Fabry-Pérot antenna with high-gain radiation and low scattering[J]. IET Microw Antennas Propag, 2020, 14(15): 1933−1942. doi: 10.1049/iet-map.2020.0415

    [57]

    Huang C, Pan W B, Ma X L, et al. A frequency reconfigurable directive antenna with wideband Low-RCS property[J]. IEEE Trans Antennas Propag, 2016, 64(3): 1173−1178. doi: 10.1109/TAP.2016.2518199

    [58]

    Zhang J H, Liu Y, Jia Y T, et al. High-gain fabry–Pérot antenna with reconfigurable scattering patterns based on varactor diodes[J]. IEEE Trans Antennas Propag, 2022, 70(2): 922−930. doi: 10.1109/TAP.2021.3111234

    [59]

    Liang J R, Liu J H. A conductor-backed coplanar waveguide leaky-wave antenna with metasurface[C]//2020 IEEE Asia-Pacific Microwave Conference, Hong Kong, China, 2020: 947–949. https://doi.org/10.1109/APMC47863.2020.9331618.

    [60]

    Pandi S, Balanis C A, Birtcher C R. Analysis of wideband multilayered sinusoidally modulated metasurface[J]. IEEE Antennas WirelPropag Lett, 2016, 15(1): 1491−1494. doi: 10.1109/lawp.2015.2514241

    [61]

    Wang Q, Zhang X Q, Plum E, et al. Polarization and frequency multiplexed terahertz meta-holography[J]. Adv Opt Mater, 2017, 5(14): 1700277. doi: 10.1002/adom.201700277

    [62]

    Guan C S, Liu J, Ding X M, et al. Dual-polarized multiplexed meta-holograms utilizing coding metasurface[J]. Nanophotonics, 2020, 9(11): 3605−3613. doi: 10.1515/nanoph-2020-0237

    [63]

    Lin Z M, Huang L L, Xu Z T, et al. Four-wave mixing holographic multiplexing based on nonlinear metasurfaces[J]. Adv Opt Mater, 2019, 7(21): 1900782. doi: 10.1002/adom.201900782

    [64]

    Wu L W, Xiao Q, Gou Y, et al. Electromagnetic diffusion and encryption holography integration based on reflection–transmission reconfigurable digital coding metasurface[J]. Adv Opt Mater, 2022, 10(10): 2102657. doi: 10.1002/adom.202102657

    [65]

    Xiao Q, Ma Q, Yan T, et al. Orbital-angular-momentum-encrypted holography based on coding information metasurface[J]. Adv Opt Mater, 2021, 9(11): 2002155. doi: 10.1002/ADOM.202002155

    [66]

    Li Y B, Cai B G, Cheng Q, et al. Isotropic holographic metasurfaces for dual-functional radiations without mutual interferences[J]. Adv Funct Mater, 2016, 26(1): 29−35. doi: 10.1002/adfm.201503654

    [67]

    Shen Y Z, Xue S, Dong G Q, et al. Multiplexing tensor holographic metasurface with surface impedance superposition for manipulating multibeams with multimodes[J]. Adv Opt Mater, 2021, 9(22): 2101340. doi: 10.1002/adom.202101340

    [68]

    Wu G B, Dai J Y, Cheng Q, et al. Sideband-free space–time-coding metasurface antennas[J]. Nat Electron, 2022, 5(11): 808−819. doi: 10.1038/s41928-022-00857-0

    [69]

    Yurduseven O, Smith D R, Fromenteze T. Design of a reconfigurable metasurface antenna for dynamic near-field focusing[C]//2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, 2018: 1707–1708. https://doi.org/10.1109/APUSNCURSINRSM.2018.8609076.

    [70]

    Tian Y C, Han J Q, Ma X J, et al. Design of 1-bit programmable holographic metasurface for monopulse radar applications[C]//2021 IEEE MTT-S International Wireless Symposium, Nanjing, 2021: 1–3. https://doi.org/10.1109/IWS52775.2021.9499630.

    [71]

    Li T, Chen Z N. Wideband sidelobe-level reduced Ka -band metasurface antenna array fed by substrate-integrated gap waveguide using characteristic mode analysis[J]. IEEE Trans Antennas Propag, 2020, 68(3): 1356−1365. doi: 10.1109/TAP.2019.2943330

    [72]

    Wang J F, Li Y, Jiang Z H, et al. Metantenna: when metasurface meets antenna again[J]. IEEE Trans Antennas Propag, 2020, 68(3): 1332−1347. doi: 10.1109/TAP.2020.2969246

    [73]

    Lv Y H, Wang R, Wang B Z, et al. Anisotropic complementary metantenna for low sidelobe radiation and low in-band Co-polarized scattering using characteristic mode analysis[J]. IEEE Trans Antennas Propag, 2022, 70(11): 10177−10186. doi: 10.1109/TAP.2022.3191138

    [74]

    Zhang P, Zhang X M, Li L. An optically transparent metantenna for RF wireless energy harvesting[J]. IEEE Trans Antennas Propag, 2022, 70(4): 2550−2560. doi: 10.1109/TAP.2021.3137166

    [75]

    Xu P, Jiang W X, Cai X, et al. An integrated coding-metasurface-based array antenna[J]. IEEE Trans Antennas Propag, 2020, 68(2): 891−899. doi: 10.1109/TAP.2019.2944529

    [76]

    Xu P, Tian H W, Jiang W X, et al. Phase and polarization modulations using radiation-type metasurfaces[J]. Adv Opt Mater, 2021, 9(16): 2100159. doi: 10.1002/adom.202100159

    [77]

    Xu P, Tian H W, Cai X, et al. Radiation-type metasurfaces for advanced electromagnetic manipulation[J]. Adv Funct Mater, 2021, 31(25): 2100569. doi: 10.1002/adfm.202100569

    [78]

    Wang Y Z, Pang C, Wang Q M, et al. Phase-only compact radiation-type metasurfaces for customized far-field manipulation[J]. IEEE Trans Microw Theory Techn, 2023, 71(9): 4119−4128. doi: 10.1109/TMTT.2023.3251574

    [79]

    Mu Y H, Pang C, Wang Y Z, et al. Complex-amplitude radiation-type metasurface enabling beamform-controlled energy allocation[J]. Photon Res, 2023, 11(6): 986−998. doi: 10.1364/PRJ.482909

    [80]

    Bai X D, Zhang F L, Sun L, et al. Radiation-type programmable metasurface for direct manipulation of electromagnetic emission[J]. Laser Photon Rev, 2022, 16(11): 2200140. doi: 10.1002/LPOR.202200140

    [81]

    Tian H W, Xu L, Li X, et al. Integrated control of radiations and in-band Co-polarized reflections by a single programmable metasurface[J]. Adv Funct Mater, 2023, 33(36): 2302753. doi: 10.1002/adfm.202302753

    [82]

    Zhao J, Yang X, Dai J Y, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. Nat Sci Rev, 2019, 6(2): 231−238. doi: 10.1093/nsr/nwy135

    [83]

    Chen M Z, Tang W K, Dai J Y, et al. Accurate and broadband manipulations of harmonic amplitudes and phases to reach 256 QAM millimeter-wave wireless communications by time-domain digital coding metasurface[J]. Nat Sci Rev, 2022, 9(1): nwab134. doi: 10.1093/nsr/nwab134

  • 加载中

(10)

计量
  • 文章访问数:  6771
  • PDF下载数:  1328
  • 施引文献:  0
出版历程
收稿日期:  2023-05-19
修回日期:  2023-09-06
录用日期:  2023-09-06
刊出日期:  2023-11-03

目录

/

返回文章
返回