基于张量分解和卷积稀疏表示的多曝光图像融合

戚余斌, 郁梅, 姜浩, 等. 基于张量分解和卷积稀疏表示的多曝光图像融合[J]. 光电工程, 2019, 46(1): 180084. doi: 10.12086/oee.2019.180084
引用本文: 戚余斌, 郁梅, 姜浩, 等. 基于张量分解和卷积稀疏表示的多曝光图像融合[J]. 光电工程, 2019, 46(1): 180084. doi: 10.12086/oee.2019.180084
Qi Yubin, Yu Mei, Jiang Hao, et al. Multi-exposure image fusion based on tensor decomposition and convolution sparse representation[J]. Opto-Electronic Engineering, 2019, 46(1): 180084. doi: 10.12086/oee.2019.180084
Citation: Qi Yubin, Yu Mei, Jiang Hao, et al. Multi-exposure image fusion based on tensor decomposition and convolution sparse representation[J]. Opto-Electronic Engineering, 2019, 46(1): 180084. doi: 10.12086/oee.2019.180084

基于张量分解和卷积稀疏表示的多曝光图像融合

  • 基金项目:
    国家自然科学基金项目(61671258);浙江省自然科学基金项目(LY15F010005)
详细信息
    作者简介:
    *通讯作者: 郁梅(1968-),女,博士,教授,主要从事多媒体信号处理与通信的研究。E-mail:yumei@nbu.edu.cn
  • 中图分类号: O436.3;TP391.41

Multi-exposure image fusion based on tensor decomposition and convolution sparse representation

  • Fund Project: Supported by National Natural Science Foundation of China (61671258) and Zhejiang Province Natural Science Foundation (LY15F010005)
More Information
  • 针对多曝光图像融合中存在细节丢失和颜色失真等问题,本文提出了一种基于张量分解和卷积稀疏表示的多曝光图像融合方法。张量分解作为一种对高维数据低秩逼近的方式,在多曝光图像特征提取方面有较大的潜力,而卷积稀疏表示是对整幅图像进行稀疏优化,能最大程度地保留图像的细节信息。同时,为了避免融合图像出现颜色失真,本文采取亮度与色度分别融合的方式。首先通过张量分解得到源图像的核心张量;然后在包含信息最多的第一子带上提取边缘特征;接着对边缘特征图进行卷积稀疏分解,继而利用分解系数的L1范数来得到每个像素的活跃水平;最后用"赢者取全"策略生成权重图,从而加权得到融合后的亮度分量。与亮度融合不同的是,色度分量则采用简单的高斯加权方式进行融合,在一定程度上解决了融合图像的颜色失真问题。实验结果表明,所提出的方法具有良好的细节保留能力。

  • Overview: The real scene usually has a luminance range from 10-5 cd/m2 to 108 cd/m2, but the existing image video devices can capture a limited luminance dynamic range. Thus, it cannot retain all the details of the real scene. In recent years, multi-exposure fusion (MEF), as an effective quality enhancement technology, has gradually become a hot research topic in digital media field. This technique combines multiple low dynamic range (LDR) images with different exposures taken by ordinary cameras to generate an image with rich details and saturated color. At present, many MEF algorithms have been proposed by relevant researchers and they can achieve great results when processing image sequences with simple background. However, when multi-exposure image sequences contain many objects with complex textures, the performance of these algorithms is not satisfactory and the terrible phenomena such as detail loss and color distortion often appear in the fused images. To solve the above problem, this paper proposesd a multi-exposure image fusion method based on tensor decomposition (TD) and convolution sparse representation (CSR). Among them, TD, as a method of low rank approximation for high-dimensional data, has great potential in multi-exposure image feature extraction, while CSR performs sparse optimization on the whole image, which can retain the detail information to the greatest extent. At the same time, in order to avoid color distortion in the fused image, luminance and chrominance were fused separately. Firstly, the core tensor of the source image was obtained through tensor decomposition and the edge feature extraction was carried out on the first sub-band which contains the most information. Secondly, the edge feature map was sparsely decomposed to obtain the activity level of each pixel by using L1 norm of the decomposition coefficient. Finally, take the "winner-take-all" strategy to generate the weight map so as to obtain the fused luminance component. Different from the luminance fusion process, chrominance components were fused by Gaussian weighting method simply according to the color space characteristics. The experiment used two sets of image sequences with complex background. Compared with other five advanced MEF algorithms, the fusion image by the proposed algorithm not only had rich details, but also did not appear the large-scale color distortion. In addition, in order to evaluate the detail preserving ability of the proposed algorithm more comprehensively, seven groups of multi-exposure image sequences were selected for objective measurement. Experimental results show that the proposed method has strong edge information preserving ability.

  • 加载中
  • 图 1  基于张量分解和卷积稀疏表示的多曝光图像融合框图

    Figure 1.  Flowchart of tensor decomposition and convolution sparse representation for multi-exposure image fusion

    图 2  House序列的多曝光图像组

    Figure 2.  Multi-exposure image stack of House sequence

    图 3  House序列的核心张量。

    Figure 3.  The core tensor of House sequence.

    图 4  第一子带的边缘特征

    Figure 4.  The edge feature of the first sub-band

    图 5  训练的卷积字典

    Figure 5.  A trained convolution dictionary

    图 6  House序列的初始权重图

    Figure 6.  Initial weight map of the House sequence

    图 7  (a) 放大后的House序列的低曝光图像;(b)图 7(a)所对应的初始权重图

    Figure 7.  (a) The enlarged low exposure image of House sequence; (b) The initial weight map of Fig. 7(a)

    图 8  精细化后的权重图。(a)基本层权重图;(b)细节层权重图

    Figure 8.  Refined weight map. (a) The weight map of basic layer; (b) The weight map of detailed layer

    图 9  高斯与线性方式加权得到的色度分量间的直方图对比

    Figure 9.  Histogram comparison for chrominance components between Gaussian weighting and linear weighting algorithm

    图 10  两种色度融合方法得到的融合图像对比。

    Figure 10.  Comparison of fused images obtained by two chrominance fusion methods.

    图 11  Lamp序列多曝光图像组

    Figure 11.  Multi-exposure image group of the Lamp sequence

    图 12  Lamp序列对比图。

    Figure 12.  Contrast maps of Lamp sequence.

    图 13  Lamp序列放大图。

    Figure 13.  Enlarged maps of Lamp sequence.

    图 14  Studio序列多曝光图像组

    Figure 14.  Multi-exposure image group of the Studio sequence

    图 15  Studio序列对比图。

    Figure 15.  Contrast maps of Studio sequence.

    图 16  Studio序列放大图。

    Figure 16.  Enlarged maps of Studio sequence.

    图 17  Studio序列放大图。

    Figure 17.  Enlarged maps of Studio sequence.

    表 1  不同算法的QAB/F指标比较

    Table 1.  Comparison of QAB/F in different algorithms

    Sequences Mertens[9] Kang[10] Liu[11] Ma[12] Ma[13] The proposed
    Room 0.6629 0.6653 0.6573 0.6263 0.6598 0.6721
    House 0.6878 0.6962 0.6910 0.5894 0.6780 0.6997
    Forth4 0.6462 0.6477 0.6418 0.6258 0.6331 0.6539
    Garage 0.6860 0.6864 0.6837 0.6686 0.6785 0.6956
    Cafe 0.6755 0.6842 0.6865 0.6721 0.6665 0.6866
    Tower 0.7598 0.7699 0.7793 0.7707 0.7689 0.7695
    SwissSunset 0.6331 0.6132 0.6028 0.5971 0.6077 0.6279
    Average 0.6788 0.6804 0.6775 0.6500 0.6704 0.6865
    下载: 导出CSV
  • [1]

    Artusi A, Richter T, Ebrahimi T, et al. High dynamic range imaging technology[J]. IEEE Signal Processing Magazine, 2017, 34(5): 165-172. doi: 10.1109/MSP.2017.2716957

    [2]

    Chiang J C, Kao P H, Chen Y S, et al. High-dynamic-range image generation and coding for multi-exposure multi-view images[J]. Circuits, Systems, and Signal Processing, 2017, 36(7): 2786-2814. doi: 10.1007/s00034-016-0437-x

    [3]

    都琳, 孙华燕, 王帅, 等.针对动态目标的高动态范围图像融合算法研究[J].光学学报, 2017, 37(4): 101-109. 10.3788/aos201737.0410001

    Du L, Sun H Y, Wang S, et al. High dynamic range image fusion algorithm for moving targets[J]. Acta Optica Sinica, 2017, 37(4): 101-109. 10.3788/aos201737.0410001

    [4]

    Li S T, Kang X D, Fang L Y, et al. Pixel-level image fusion: a survey of the state of the art[J]. Information Fusion, 2017, 33: 100-112. doi: 10.1016/j.inffus.2016.05.004

    [5]

    Zhao C H, Guo Y T, Wang Y L. A fast fusion scheme for infrared and visible light images in NSCT domain[J]. Infrared Physics & Technology, 2015, 72: 266-275. 10.1016/j.infrared.2015.07.026

    [6]

    Chen C, Li Y Q, Liu W, et al. Image fusion with local spectral consistency and dynamic gradient sparsity[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014: 2760-2765.

    [7]

    Sun J, Zhu H Y, Xu Z B, et al. Poisson image fusion based on Markov random field fusion model[J]. Information Fusion, 2013, 14(3): 241-254. doi: 10.1016/j.inffus.2012.07.003

    [8]

    Liu Y, Liu S P, Wang Z F. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24: 147-164. doi: 10.1016/j.inffus.2014.09.004

    [9]

    Mertens T, Kautz J, van Reeth F. Exposure fusion: a simple and practical alternative to high dynamic range photography[J]. Computer Graphics Forum, 2009, 28(1): 161-171. doi: 10.1111/cgf.2009.28.issue-1

    [10]

    Li S T, Kang X D, Hu J W. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2864-2875. doi: 10.1109/TIP.2013.2244222

    [11]

    Liu Y, Wang Z F. Dense SIFT for ghost-free multi-exposure fusion[J]. Journal of Visual Communication and Image Representation, 2015, 31: 208-224. doi: 10.1016/j.jvcir.2015.06.021

    [12]

    Ma K D, Li H, Yong H W, et al. Robust multi-exposure image fusion: a structural patch decomposition approach[J]. IEEE Transactions on Image Processing, 2017, 26(5): 2519-2532. doi: 10.1109/TIP.2017.2671921

    [13]

    Ma K D, Duanmu Z F, Yeganeh H, et al. Multi-exposure image fusion by optimizing a structural similarity index[J]. IEEE Transactions on Computational Imaging, 2018, 4(1): 60-72. doi: 10.1109/TCI.2017.2786138

    [14]

    Kolda T G, Bader B W. Tensor decompositions and applications[J]. SIAM Review, 2009, 51(3): 455-500. doi: 10.1137/07070111X

    [15]

    Wang H Z, Ahuja N. A tensor approximation approach to dimensionality reduction[J]. International Journal of Computer Vision, 2008, 76(3): 217-229. 10.1007/s11263-007-0053-0

    [16]

    Zeiler M D, Krishnan D, Taylor G W, et al. Deconvolutional networks[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 2010: 2528-2535.

    [17]

    Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[J]. SIAM Journal on Scientific Computing, 1998, 20(1): 33-61. doi: 10.1137/S1064827596304010

    [18]

    Wohlberg B. Efficient algorithms for convolutional sparse representations[J]. IEEE Transactions on Image Processing, 2016, 25(1): 301-315. doi: 10.1109/TIP.2015.2495260

    [19]

    Liu J L, Garcia-Cardona C, Wohlberg B, et al. Online convolutional dictionary learning[C]//Proceedings of 2017 IEEE International Conference on Image Processing, Beijing, China, 2017.

    [20]

    Liu Y, Chen X, Ward R K, et al. Image fusion with convolutional sparse representation[J]. IEEE Signal Processing Letters, 2016, 23(12): 1882-1886. doi: 10.1109/LSP.2016.2618776

    [21]

    Paul S, Sevcenco I S, Agathoklis P. Multi-exposure and multi-focus image fusion in gradient domain[J]. Journal of Circuits, Systems, and Computers, 2016, 25(10): 1650123. doi: 10.1142/S0218126616501231

    [22]

    Banterle F, Artusi A, Debattista K, et al. Advanced High Dynamic Range Imaging: Theory and Practice[M]. Natick, MA: A K Peters, 2011.

    [23]

    Ma K D. Multi-Exposure Image Fusion by Optimizing A Structural Similarity Index[DB/OL]. https://ece.uwaterloo.ca/~k29ma/dataset/MEFOpt_Database, 2018.

    [24]

    Xydeas C S, Petrovic V. Objective image fusion performance measure[J]. Electronics Letters, 2000, 36(4): 308-309. doi: 10.1049/el:20000267

  • 加载中

(17)

(1)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2018-04-14
修回日期:  2018-07-13
刊出日期:  2019-01-01

目录

/

返回文章
返回