基于跨尺度融合的图像型航空火灾探测器

张沛,任恒英,田佳麒,等. 基于跨尺度融合的图像型航空火灾探测器[J]. 光电工程,2025,52(1): 240253. doi: 10.12086/oee.2025.240253
引用本文: 张沛,任恒英,田佳麒,等. 基于跨尺度融合的图像型航空火灾探测器[J]. 光电工程,2025,52(1): 240253. doi: 10.12086/oee.2025.240253
Zhang P, Ren H Y, Tian J Q, et al. Image-based aerial fire detector based on cross-scale fusion[J]. Opto-Electron Eng, 2025, 52(1): 240253. doi: 10.12086/oee.2025.240253
Citation: Zhang P, Ren H Y, Tian J Q, et al. Image-based aerial fire detector based on cross-scale fusion[J]. Opto-Electron Eng, 2025, 52(1): 240253. doi: 10.12086/oee.2025.240253

基于跨尺度融合的图像型航空火灾探测器

  • 基金项目:
    国家重大科技计划项目(J2019-VIII-0010-0171)
详细信息
    作者简介:
    *通讯作者: 任恒英,renhengying1976@163.com。
  • 中图分类号: TP391.41

  • CSTR: 32245.14.oee.2025.240253

Image-based aerial fire detector based on cross-scale fusion

  • Fund Project: Project supported by National Science and Technology Major Project(J2019-VIII-0010-0171)
More Information
  • 针对飞行过程中,在高空气压较低,飞机货舱若发生火灾,烟雾颗粒半空悬浮,传统烟雾探测器难以检测,且在其它环境亦存在误漏报率较高,难以可视化等问题,设计了一款图像型火灾探测器,采用改进YOLOv5s算法实现烟火目标检测。首先将骨干网络替换为GhostNet轻量级骨干网络,便于硬件部署;在骨干网络与融合网络的连接处嵌入了协同注意力模块,强化对有效特征的提取。接着,针对火灾目标的发展变化特性,对特征融合网络中的C3结构进行改进,搭建了VoV-GSCSP模块,同时在融合网络和检测头之间嵌入Slim-ASFF模块,共同加强不同尺度特征融合的同时,实现了整体网络的进一步轻量化。最后,将回归损失替换为Focal EIOU,解决了惩罚项失效问题,并且提高了对正样本的预测能力。图像型航空火灾探测器以国产AI芯片RK3588为核心,连接CMOS图像传感器进行数据采集,通过网络实现与机载显示系统的信息交互。测试结果表明:在模拟飞机货舱顶部四角布置设备,可实现10 s内火焰报警,20 s内烟雾报警,为确保航空器安全提供了一种可行的解决方案。

  • Overview: To address the challenges of traditional smoke detectors in identifying replaced smoke in the cargo hold of high-altitude, low-pressure aircraft, an innovative image-based fire-and-smoke detection system was developed using the domestic RK3588 embedded AI chip. This system employs an enhanced YOLOv5s detection algorithm tailored specifically for fire-and-smoke detection, incorporating several critical improvements to achieve high precision and operational efficiency. The backbone network of YOLOv5s is replaced with the lightweight GhostNet architecture, which significantly reduces computational requirements and the model’s parameter size, making it highly suitable for deployment on embedded devices with limited resources. To enhance feature extraction, a collaborative attention module is integrated between the backbone and the feature aggregation network, ensuring that critical features are captured effectively for better detection outcomes. In addition, the C3 structure in the feature fusion network is substituted with the VoV-GSCSP module. This modification not only enhances the integration of multi-scale features but also reduces computational complexity, enabling the system to handle high-resolution images more efficiently. To further optimize the system’s performance, the Slim-ASFF module is inserted between the feature fusion network and the detection head. This addition improves the combination of feature maps across varying scales, ensuring accurate detection of both small and large fire-and-smoke instances. The regression loss function is also updated by replacing the standard loss function with Focal EIOU. This improvement addresses challenges related to aspect ratio variations in the original loss function, enhancing the system’s ability to identify positive samples while reducing false alarms effectively. Experimental results on a self-constructed fire-and-smoke dataset demonstrate the system achieves a 2.0% increase in mean Average Precision at a 0.5 threshold (mAP50) and a 2.2% improvement at 0.5:0.95 thresholds (mAP50:95). These results demonstrate the algorithm’s effectiveness under challenging conditions, such as low light and high turbulence environments, making it highly reliable for real-world applications. The hardware of this system is centered around the RK3588 embedded processing board, which interfaces with a CMOS image sensor for real-time data acquisition. The processing board includes an RTSP streaming server, enabling the host computer to access the visual interface via the onboard LAN and an assigned IP address. Testing in a simulated cabin of 15 m × 8 m × 4 m demonstrated reliable performance, with flame alarms triggered within 10 seconds and smoke alarms within 20 seconds. All functional indicators met rigorous design specifications, confirming the system as a scalable, efficient, and reliable solution for fire-and-smoke detection in aircraft cargo holds. By combining advanced deep learning techniques, lightweight architectures, and optimized hardware, this system ensures compliance with the stringent demands of real-time monitoring in airborne environments.

  • 加载中
  • 图 1  探测器系统工作流程

    Figure 1.  Detector system workflow

    图 2  图像型航空火灾探测器硬件整体结构

    Figure 2.  Overall structure of the image-based aviation fire detector hardware

    图 3  模型转换过程

    Figure 3.  Model conversion process

    图 4  网络拓扑图

    Figure 4.  Network topology

    图 5  可视化界面。(a)多传感器并行显示;(b)火焰弹图报警及文字提示;(c)烟雾弹图报警及文字提示

    Figure 5.  Visual interface. (a) Multi-sensor parallel display; (b) Flame bomb diagram alarm and text prompt; (c) Smoke grenade map alarm and text prompt

    图 6  YOLOv5s网络整体结构

    Figure 6.  Overall structure of the YOLOv5s network

    图 7  Ghost模块

    Figure 7.  Ghost module

    图 8  协同注意力模块

    Figure 8.  Co-attention module

    图 9  GSConv模块

    Figure 9.  GSConv module

    图 10  GS bottleneck模块和VoV-GSCSP模块结构。(a) GS bottleneck模块结构;(b) VoV-GSCSP模块结构

    Figure 10.  Structure of the GS bottleneck module and VoV-GSCSP module. (a) GS bottleneck module structure; (b) VoV-GSCSP module structure

    图 11  ASFF结构示意图

    Figure 11.  Diagram of ASFF structure

    图 12  试验环境示意图。(a)大型高空环境模拟装置;(b)舱内试验环境

    Figure 12.  Schematic diagram of the test environment. (a) Large-scale high-altitude environment simulation device; (b) In-cabin test environment

    表 1  火灾检测网络消融实现结果

    Table 1.  Implementation results of the fire detection network ablation

    ModelGhostNetCoordinated
    attention
    Lightweight feature
    fusion network
    Slim-ASFFLoss functionAP50
    /%
    AP
    /%
    Params/MFLOPs/G
    YOLOv5s89.447.97.116.5
    The model of
    this article
    86.845.05.010.6
    87.445.75.010.7
    88.546.94.28.5
    90.148.64.48.9
    91.450.14.48.9
    下载: 导出CSV

    表 2  轻量级目标检测网络对比实验结果

    Table 2.  Comparative experimental results of lightweight object detection networks

    ModelAP50/%AP/%Params/MFLOPs/G
    YOLOv6s[16]90.249.118.545.3
    YOLOv7-tiny[17]89.248.86.013.2
    YOLOv8s90.749.511.228.6
    SSDLite[18]85.844.64.39.6
    EfficientDet-D1[19]87.646.16.66.2
    YOLOv9-T[20]89.649.02.711.0
    YOLOv10-N[21]88.447.62.36.4
    RT-DETR-Res18[22]89.649.220.060.5
    The model of this article91.450.14.48.9
    下载: 导出CSV

    表 3  不同工况下系统对烟火的平均响应时间

    Table 3.  Average response time of system to fireworks under different working conditions

    Test environment Project 2 m 3 m 4 m
    /Number of tests303030
    /Alarm times303030
    Bright environmentPolyurethane foam board (fire)/s5.26.87.8
    Cotton rope (fire)/s5.06.57.4
    Smoke cake (smoke)/s11.013.017.0
    Dark environmentPolyurethane foam board (fire)/s6.37.48.3
    Cotton rope (fire)/s5.56.97.8
    Smoke cake (smoke)/s12.015.019.0
    下载: 导出CSV

    表 4  本文探测器与传统火灾探测器对比实验结果

    Table 4.  Experimental results of the detector in this paper compared with the traditional fire detector

    Test materials Number
    of trials
    Number of
    detector alarms
    in this paper
    Number of alarms
    from traditional fire
    detectors
    The slowest response
    time of the detector in
    this paper/s
    The slowest response
    time of traditional fire
    detectors/s
    The average response
    time of the detector in
    this paper/s
    The average response
    time of traditional fire
    detector/s
    Polyurethane foam
    board (fire)
    10 10 5 9.0 108 6.5 97
    Smoke cake (smoke) 10 10 7 16.5 57 12.0 45
    下载: 导出CSV

    表 5  不同环境光线影响下的探测器虚警率

    Table 5.  False alarm rate of detector under the influence of different environmental light

    ProjectInterference source 1Interference source 2Interference source 3
    Number of tests303030
    False alarm rate000
    下载: 导出CSV
  • [1]

    胡君健, 谢启源, 戎军, 等. 感烟火灾探测器的抗干扰实验及其分析[J]. 火灾科学, 2005, 14(2): 111−116. doi: 10.3969/j.issn.1004-5309.2005.02.009

    Hu J J, Xie Q Y, Rong J, et al. Experimental analysis on nuisance immunity of smoke detectors[J]. Fire Saf Sci, 2005, 14(2): 111−116. doi: 10.3969/j.issn.1004-5309.2005.02.009

    [2]

    Zhang R, Zhang W, Liu Y Y, et al. An efficient deep neural network with color-weighted loss for fire detection[J]. Multimed Tools Appl, 2022, 81(27): 39695−39713. doi: 10.1007/s11042-022-12861-9

    [3]

    高锴. 浅谈图像感烟探测产品在飞机货仓火灾探测中的应用[J]. 品牌与标准化, 2016, (7): 75−78. doi: 10.3969/j.issn.1674-4977.2016.07.006

    Gao K. Application of image smoke detection products in aircraft cargo compartment fire detection[J]. Brand Stand, 2016, (7): 75−78. doi: 10.3969/j.issn.1674-4977.2016.07.006

    [4]

    Blake D. Aircraft cargo compartment smoke detector alarm incidents on U. S. -registered aircraft, 1974–1999[R]. Atlantic City: Federal Aviation Administration, 2000.

    [5]

    何志祥, 王立纲, 孟超, 等. 基于多数据融合的复合火灾探测系统设计[J]. 消防科学与技术, 2019, 38(7): 977−980. doi: 10.3969/j.issn.1009-0029.2019.07.022

    He Z X, Wang L G, Meng C, et al. Design of composite fire detection system based on multi-data fusion[J]. Fire Sci Technol, 2019, 38(7): 977−980. doi: 10.3969/j.issn.1009-0029.2019.07.022

    [6]

    张红梅, 叶慧, 郑罡, 等. 多传感器飞机货舱火警探测系统研究[J]. 重庆理工大学学报(自然科学), 2017, 31(7): 176−181. doi: 10.3969/j.issn.1674-8425(z).2017.07.028

    Zhang H M, Ye H, Zheng G, et al. Research on the multi sensor fire detection system in aircraft cargo[J]. J Chongqing Univ Technol (Nat Sci), 2017, 31(7): 176−181. doi: 10.3969/j.issn.1674-8425(z).2017.07.028

    [7]

    何永勃, 张文杰, 杨伟, 等. 飞机货舱复合烟雾探测方法研究[J]. 中国安全科学学报, 2019, 29(1): 43−48. doi: 10.16265/j.cnki.issn1003-3033.2019.01.008

    He Y B, Zhang W J, Yang W, et al. Research on multi-sensor smoke detection method for aircraft cargo compartment[J]. China Saf Sci J, 2019, 29(1): 43−48. doi: 10.16265/j.cnki.issn1003-3033.2019.01.008

    [8]

    王哲. 飞机货舱防火设计要求研究[J]. 航空标准化与质量, 2014, (5): 13−15, 34. doi: 10.13237/j.cnki.asq.2014.05.004

    Wang Z. Research on fire protection design requirements for aircraft cargo compartments[J]. Aeronaut Stand Qual, 2014, (5): 13−15, 34. doi: 10.13237/j.cnki.asq.2014.05.004

    [9]

    张小雪, 王雨, 吴思远, 等. 基于级联稀疏查询机制的轻量化火灾检测算法[J]. 光电工程, 2023, 50(10): 230216. doi: 10.12086/oee.2023.230216

    Zhang X X, Wang Y, Wu S Y, et al. An improved lightweight fire detection algorithm based on cascade sparse query[J]. Opto-Electron Eng, 2023, 50(10): 230216. doi: 10.12086/oee.2023.230216

    [10]

    Han K, Wang Y H, Tian Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 2020: 1577–1586. https://doi.org/10.1109/CVPR42600.2020.00165.

    [11]

    Zhang Y F, Ren W Q, Zhang Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146−157. doi: 10.1016/j.neucom.2022.07.042

    [12]

    Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]//Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, 2017: 2999–3007. https://doi.org/10.1109/ICCV.2017.324.

    [13]

    Hou Q B, Zhou D Q, Feng J S. Coordinate attention for efficient mobile network design[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, 2021: 13708–13717. https://doi.org/10.1109/CVPR46437.2021.01350.

    [14]

    Li H L, Li J, Wei H B, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[Z]. arXiv: 2206.02424, 2024. https://arxiv.org/abs/2206.02424v1.

    [15]

    Liu S T, Huang D, Wang Y H. Learning spatial fusion for single-shot object detection[Z]. arXiv: 1911.09516, 2019. https://doi.org/10.48550/arXiv.1911.09516.

    [16]

    Li C Y, Li L L, Jiang H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[Z]. arXiv: 2209.02976, 2022. https://doi.org/10.48550/arXiv.2209.02976.

    [17]

    Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, 2023: 7464–7475. https://doi.org/10.1109/CVPR52729.2023.00721.

    [18]

    Liu W, Anguelov D, Erhan D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, 2016: 21–37. https://doi.org/10.1007/978-3-319-46448-0_2.

    [19]

    Tan M X, Pang R M, Le Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 2020: 10778–10787. https://doi.org/10.1109/CVPR42600.2020.01079.

    [20]

    Wang C Y, Ye I H, Liao H Y M. YOLOv9: learning what you want to learn using programmable gradient information[C]//Proceedings of the 18th European Conference on Computer Vision, Milan, 2024: 1–21. https://doi.org/10.1007/978-3-031-72751-1_1.

    [21]

    Wang A, Chen H, Liu L H, et al. YOLOv10: real-time end-to-end object detection[Z]. arXiv: 2405.14458, 2024. https://doi.org/10.48550/arXiv.2405.14458.

    [22]

    Zhao Y, Lv W Y, Xu S L, et al. DETrs beat YOLOs on real-time object detection[C]//Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 2024: 16965–16974. https://doi.org/10.1109/CVPR52733.2024.01605.

    [23]

    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 特种火灾探测器: GB 15631–2008[S]. 北京: 中国标准出版社, 2009.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People's Republic of China. Special type fire detectors: GB 15631–2008[S]. Beijing: Standards Press of China, 2009.

    [24]

    闵芳. 盘点世界各国大型运输机[J]. 生命与灾害, 2013, 3: 34−37. https://cqvip.com/doc/journal/972803679

    Min F. Overview of large transport aircraft in various countries[J]. Life Disaster, 2013, 3: 34−37. https://cqvip.com/doc/journal/972803679

  • 加载中

(13)

(5)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2024-10-27
修回日期:  2024-12-23
录用日期:  2024-12-23
刊出日期:  2025-01-25

目录

/

返回文章
返回