-
摘要:
光纤法布里-珀罗传感器以灵敏度高、抗干扰能力强等优点在医疗检测、水声探测、电力监测等领域受到了广泛的关注。光源参数、传感头结构与解调方法是制约光纤法布里-珀罗传感器检测能力的主要因素。对光纤法布里-珀罗传感器解调,即从携带法布里-珀罗传感器腔长信息的输出光信号中提取腔长信息。该腔长信息映射出了传感头所感受到的振动、位移、加速度、温度等待测量信息。一种好的解调方法能够提高光纤法布里珀罗传感器的解调速度、分辨率、动态范围等性能,而光纤法布里-珀罗传感器的解调方法多达数十种,针对特定的应用场景如何选择适宜的解调方法往往令人困扰。本文首先介绍了光纤法布里-珀罗传感器的输出信号特征,然后从原理上详述了常见解调方法的影响因素,并介绍了国内外研究单位提出的多种改进方法,最后从解调方法的适用范围及光纤法布里-珀罗传感器的复用技术两方面出发,提出了解调方法的选取原则。
Abstract:Fiber optic Fabry-Perot sensors have attracted a lot of attention in many fields such as medical detection, underwater acoustic detection, and electric power monitoring due to their high sensitivity and strong anti-interference ability. The parameters of the light source, the structure of the sensing head, and the demodulation methods are the main factors that restrict the detection ability of fiber optic Fabry-Perot sensors. Demodulating the fiber optic Fabry-Perot sensors is to extract cavity length from the output optical signal which indicates the information of vibration, displacement, acceleration, temperature, and other parameters sensed by the sensor's head. An excellent demodulation method can improve the demodulation speed, resolution, and dynamic range of the fiber optic Fabry-Perot sensor. However, there are dozens of demodulation methods for the fiber optic Fabry-Perot sensor, and it is difficult to choose the appropriate demodulation method for specific application scenarios. In this paper, firstly, the characteristics of the signal output from the optical fiber Fabry-Perot sensor are reviewed. Then, the influencing factors of the common demodulation methods are described in detail, and the improvement methods proposed by domestic and foreign research institutes are also introduced. Finally, the choice principle of the demodulation is proposed from two aspects: the applicable condition and the multiplexing of the optical fiber Fabry-Perot sensor.
-
Key words:
- Fabry-Perot sensor /
- demodulation methods /
- multiplexing /
- method selection
-
Overview: With the development of optical fiber sensing technology and the increase of application requirements, the Fabry-Perot sensors are developing towards the direction of high precision, and high resolution, and are more suitable for extreme harsh environments. The demodulation method affects the performance of the Fabry-Perot sensors to a great extent. However, there are dozens of demodulation methods for the fiber optic Fabry-Perot sensors, and it is often difficult to choose the appropriate demodulation method for specific application scenarios.
Therefore, we analyzed the characteristics of the output signal of the fiber optic Fabry-Perot sensors. Meanwhile, we discussed the principle of nine main demodulation methods of the fiber optic F-P sensors and their influencing factors, such as the working point control method, the spectral peak tracing method, and the phase generated carrier method. Finally, we reviewed the improvement methods proposed by researchers at home and abroad.
We concluded that the intensity demodulation methods are susceptible to the influence of light sources, so these methods need to be improved from the aspects of reducing the disturbance of light sources. The amount of calculation of the wavelength demodulation and the phase demodulation methods is often large, so these methods can be improved by improving the demodulation speed, improving the spectral line resolution and other aspects. In addition, many classical methods such as the working point control method, the bimodal tracking method, and so on cannot fully meet the application requirements. New demodulation methods or improved demodulation methods, such as the phase-shifting demodulation method, the non-scanning cross-correlation method, and so on, have the value of continuous research and broad application prospects.
The choice of demodulation method needs to give priority to matching the demodulation method and the head of Fabry-Perot sensors. Demodulation will be difficult or even impossible when the method and the sensor head are unmatching. Then the demodulation methods are selected according to the requirements of sensitivity, resolution, dynamic range, demodulation speed, and other performance in different application scenarios. When it comes to the large-scale application of Fabry-Perot sensors, reuse technology is needed. How to reduce the complexity of the output signal, reduce the crosstalk between signals and reduce the difficulty of demodulation are the difficulty of Fabry-Perot sensors multiplexing. The PMDI demodulation method, non-scanning cross-correlation method, and other demodulation methods with intrinsic multiplexing ability are helpful to the multiplexing of the Fabry-Perot sensors and can be selected preferentially.
In the end, the demodulation method of Fabry-Perot sensors ultimately serves for practical application. The complex environment in engineering applications affects the performance of the Fabry-Perot sensors. So, the research on the demodulation method should not be limited to the laboratory environment. Developing a demodulation method with engineering application value is vital.
-
表 1 调制后I的特点
Table 1. The characteristics of I after modulation
ψ(t) φ(t)=nπ φ(t)=nπ/2 I中只含ω0的偶数倍频 I中只含ω0的奇数倍频 mπ ω0中只有ω的偶数倍频 ω0中只有ω的奇数倍频 mπ/2 ω0中只有ω的奇数倍频 ω0中只有ω的偶数倍频 表 2 关键参数与光源对PGC算法解调结果的影响
Table 2. The influence of the key parameters and light source on the demodulation result of PGC
PGC-DCM PGC-Atan C 典型值为2.37 rad,不稳定将影响解调结果。 典型值为2.63 rad,不稳定将影响解调结果。 J1(C)和J2(C) J1(C)=J2(C) J1(C)=J2(C) G和H 增大G和H可提高信噪比,但不应使器件过载。 无关。 B 取决于光功率和F-P的混合效率,难控制。 无关。 光源 光源的不稳定和入射光偏振变化引起的光强波动会引起解调结果偏差。 无影响,且可消除光强干扰对解调结果的影响。 表 3 各类解调方法的比较
Table 3. Comparison of various demodulation
类型 解调方法 优点 缺点 腔长测量 适用条件 强度解调 工作点控制法 原理简单,解调速度快,线性范围内灵敏度高 工作点易漂移,线性范围窄,动态范围小 相对测量 可解调腔长变化较小的F-P传感器。可用于对实时性要求高的场合 相位正交法 解调速度快,动态范围较工作点控制法大 易受光源、光路、环境扰动的影响,难以精准地控制信号正交 相对测量 波长解调 谱峰追踪法 单峰 分辨率高 动态范围有限,精度低 相对测量 可用于腔长变化较大的
场合双峰 动态范围大 分辨率低 绝对测量 多峰 分辨率高,动态范围大 算法复杂,运算量大 绝对测量 傅里叶变换法 灵敏度高,动态范围大,解调速度快,受光源波动影响小 受光源谱宽和傅里叶频谱分辨率的影响 绝对测量 可解调腔长较长的F-P传感器 离散腔长域法 精度高,灵敏度高,动态范围大,受光源影响小 算法复杂,运算量大 绝对测量 可用于不要求快速解调的场合 相位解调 PGC解调法 DCM 算法简单,动态范围大,灵敏度高,精度高 易受光源光强和C值的影响 相对测量 可解调腔长较长的F-P传感器;对硬件要求无需
较高Atan 动态范围大,灵敏度高,精度高,消除光源干扰 可能引入谐波分量,运算量较大 移相解调法 可通过信号运算去除直流干扰,算法简单,鲁棒
性好\ 相对测量 需已知F-P传感器腔长和光波长 PMDI解调法 对光强波动不敏感,精度较高 路径匹配难、易受恶劣环境影响导致失配 绝对测量 可解调不同精细度F-P传感器 互相关法 扫描式 匹配器件搭配较灵活 成本高,稳定性与重复性差 绝对测量 需采用低相干光源 非扫描式 结构简单,稳定性较扫描式有提高 解调精度受光楔表面平整度影响。CCD给系统引入了噪声 表 4 不同应用场景中,部分国内外研究者对F-P传感器解调方法的选择与比较
Table 4. Selection and comparison of demodulation method for F-P sensor from some researchers in different application scenarios
应用场景 研究者 研究单位 解调方法 备注 声压 王付印[53] 国防科技大学 工作点控制法 工作点控制法与PMDI-PGC解调法的解调结果基本一致,仅对谐振峰的测量略有不同 PMDI-PGC解调法 刘彬[57] 哈尔滨工业大学 工作点控制法 采用工作点控制法解调了EFPI水听器输出信号;为测试PGC-DCM解调方法,专门制作长腔长的EFPI PGC-DCM解调法 压力 Yu L等[65] 清华大学 离散傅里叶解调法+最小均方差估计算法 混合解调法可在200 ms内快速解调出油井压力,大幅降低了多井测量的时间与解调系统成本 张鹏 [25] 南京信息工程大学 谱峰追踪法 改进后的多峰法解调结果的线性度、灵敏度、精度均优于傅里叶变换法的结果 傅里叶变换法 超声 Yu B等[6] 弗吉尼亚理工大学 工作点控制法 强度解调法响应速度快,非常适用于声波检测。基于F-P传感器的局部放电超声信号检测多采用强度解调。移相解调法对高频动态信号具有良好的解调效果,有望用于超声信号检测 司文荣 等[66] 上海电科院 工作点控制法 张伟超 等[67] 哈尔滨理工大学 工作点控制法 Liu Q 等[52] 大连理工大学 移相解调法 温度、声压 Xu J C [22] 弗吉尼亚理工大学 谱峰追踪法 采用基于多峰拟合的谱峰追踪法只能观测到2~5个峰,该解调法与光源带宽、多膜传感头工作范围不匹配 张知先 等[68] 重庆大学 傅里叶变换法 FFT算法可避免谱峰追踪法中峰值未能精确提取的问题 静态应变、
温度、振动曾祥楷 等[69] 重庆大学 相位解调 对于静态应变与温度,采用基于光谱仪的相位解调;对于
振动,利用锯齿波快速扫描相位解调表 5 复用技术的优缺点比较
Table 5. Comparison of the advantages and disadvantages of reuse technologies
复用技术 优点 缺点 空分复用 结构简单,各通路之间无串扰,测量范围大。 复用效率低。 时分复用 传感器数量不受光源带宽限制。 对采样率要求较高;受光源功率限制;传感器数量较多时,信噪比急剧下降。 波分复用 结构简单。 分析仪器需要有大的光谱响应范围;每个传感器占用一段光谱,复用能力有限。 频分复用 复用效率高。 对光源功率要求高。 相干复用 满足大型多路复用传感系统,可实现多点、多参量测量。 路径匹配较难;复用能力受光源相干长度、频率、载波频率影响。 -
[1] Al-Bassyiouni M, Yu M, Balachandran B, et al. Fiber optic sensors for active acoustics control[J]. Proc SPIE, 2002, 4693: 396−406. doi: 10.1117/12.475236
[2] Perez-Herrera R A, Bravo M, Leandro D, et al. Multiparameter sensor based on a multi-interferometric serial configuration for temperature and strain measurements[J]. IEEE J Sel Top Quantum Electron, 2021, 27(6): 5600704.
[3] 张天鹏. 基于冠脉血流储备分数检测的光纤法布里-珀罗传感器研究[D]. 济南: 山东大学, 2019.
Zhang T P. Research of fiber Fabry-Perot sensor based on coronary fractional flow reserve detection[D]. Ji’nan: Shandong University, 2019.
[4] Uotila J. Use of the optical cantilever microphone in photoacoustic spectroscopy[D]. Turku: University of Turku, 2009.
[5] Kilic O, Digonnet M J F, Kino G S, et al. Miniature photonic-crystal hydrophone optimized for ocean acoustics[J]. J Acoust Soc Am, 2011, 129(4): 1837−1850. doi: 10.1121/1.3543949
[6] Yu B, Kim D W, Deng J D, et al. Fiber Fabry-Perot sensors for detection of partial discharges in power transformers[J]. Appl Opt, 2003, 43(16): 3241−3250.
[7] Kilic O, Digonnet M, Kino G, et al. External fibre Fabry-Perot acoustic sensor based on a photonic-crystal mirror[J]. Meas Sci Technol, 2007, 18: 3049−3054. doi: 10.1088/0957-0233/18/10/S01
[8] Dong B, Han M, Sun L Q, et al. Sulfur hexafluoride-filled extrinsic Fabry-Pérot interferometric fiber-optic sensors for partial discharge detection in transformers[J]. IEEE Photonics Technol Lett, 2008, 20(18): 1566−1568. doi: 10.1109/LPT.2008.928533
[9] Islam R, Ali M M, Lai M H, et al. Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review[J]. Sensors, 2014, 14(4): 7451−7488. doi: 10.3390/s140407451
[10] 江毅, 唐才杰. 光纤Fabry-Perot干涉仪原理及应用[M]. 北京: 国防工业出版社, 2009.
Jiang Y, Tang C J. Optical Fiber Fabry-Peort Interferometer Principle and Applications[M]. Beijing: National Defense Industry Press, 2009.
[11] Tian J J, Zhang Q, Fink T, et al. Tuning operating point of extrinsic Fabry-Perot interferometric fiber-optic sensors using microstructured fiber and gas pressure[J]. Opt Lett, 2012, 37(22): 4672−4674. doi: 10.1364/OL.37.004672
[12] Mao X F, Zhou X L, Yu Q X. Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors[J]. Opt Commun, 2016, 361: 17−20. doi: 10.1016/j.optcom.2015.10.022
[13] Li A, Jing Z G, Liu Y Y, et al. Quadrature operating point stabilizing technique for fiber-optic Fabry-Perot sensors using vernier-tuned distributed Bragg reflectors laser[J]. IEEE Sens J, 2021, 21(2): 2084−2091. doi: 10.1109/JSEN.2020.3017083
[14] Murphy K A, Gunther M F, Vengsarkar A M, et al. Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors[J]. Opt Lett, 1991, 16(4): 273−275. doi: 10.1364/OL.16.000273
[15] Tran T A, Miller III W V, Murphy K A, et al. Stabilized extrinsic fiber-optic Fizeau sensor for surface acoustic wave detection[J]. J Lightwave Technol, 1992, 10(10): 1499−1506. doi: 10.1109/50.166795
[16] 王婷婷, 王鸣, 李明, 等. 光纤法布里-珀罗腔传感器双波长解调法及波长优化设计[J]. 光学学报, 2005, 25(10): 1297−1301. doi: 10.3321/j.issn:0253-2239.2005.10.001
Wang T T, Wang M, Li M, et al. Dual-wavelength demodulation and wavelength optimization for optical fiber Fabry-Pérot sensor[J]. Acta Opt Sin, 2005, 25(10): 1297−1301. doi: 10.3321/j.issn:0253-2239.2005.10.001
[17] Dong B, Han M, Wang A B. Two-wavelength quadrature multipoint detection of partial discharge in power transformers using fiber Fabry-Perot acoustic sensors[J]. Proc SPIE, 2012, 8370: 83700K. doi: 10.1117/12.920816
[18] Xia J, Xiong S D, Wang F Y, et al. Wavelength-switched phase interrogator for extrinsic Fabry-Perot interferometric sensors[J]. Opt Lett, 2016, 41(13): 3082−3085. doi: 10.1364/OL.41.003082
[19] Jia J S, Jiang Y, Zhang L C, et al. Dual-wavelength DC compensation technique for the demodulation of EFPI fiber sensors[J]. IEEE Photonics Technol Lett, 2018, 30(15): 1380−1383. doi: 10.1109/LPT.2018.2848934
[20] Zheng J J, Li W, Liu X Y. Fast and simple interrogation of extrinsic Fabry-Perot interferometer sensor based on dual-wavelength intensity ratio[J]. Opt Commun, 2019, 439: 176−180. doi: 10.1016/j.optcom.2019.01.004
[21] 陈伟民, 王宁, 朱永, 等. 实际光源光谱分布对相位型光纤法-珀应变传感器的影响及其实验研究[J]. 中国激光, 2003, 30(1): 88−92. doi: 10.3321/j.issn:0258-7025.2003.01.023
Chen W M, Wang N, Zhu Y, et al. Experimental study on the affection of Gaussian spectrum of light source on the optical fiber F-P strain sensor[J]. Chin J Lasers, 2003, 30(1): 88−92. doi: 10.3321/j.issn:0258-7025.2003.01.023
[22] Xu J C. High temperature high bandwidth fiber optic pressure sensors[D]. Blacksburg, Virginia: Virginia Polytechnic Institute and State University, 2005.
[23] Mei J W, Xiao X S, Yang C X. High-resolution and large dynamic range fiber extrinsic Fabry-Perot sensing by multi-extrema-tracing technique[J]. Appl Opt, 2015, 54(12): 3677−3681. doi: 10.1364/AO.54.003677
[24] 曹群, 贾平岗, 杨兵, 等. 光纤法珀压力传感器数据解调及改进算法研究[J]. 仪表技术与传感器, 2015(12): 15−18. doi: 10.3969/j.issn.1002-1841.2015.12.005
Cao Q, Jia P G, Yang B, et al. Study of improved algorithm about data demodulation of fiber optic F-P pressure sensing system[J]. Instrum Tech Sens, 2015(12): 15−18. doi: 10.3969/j.issn.1002-1841.2015.12.005
[25] 张鹏. 短腔干涉型光纤法珀压力传感器解调技术研究[D]. 南京: 南京信息工程大学, 2021.
Zhang P. Research on demodulation technology of short-cavity interferometric fiber optic Fabry-Perot pressure sensors[D]. Nanjing: Nanjing University of Information Science and Technology, 2021.
[26] Jiang Y. Fourier Transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry-PÉrot interferometric sensors[J]. IEEE Photonics Technol Lett, 2008, 20(2): 75−77. doi: 10.1109/LPT.2007.912567
[27] 雷小华 陈伟民, 章鹏, 等. 基于三次样条插值的光纤F-P传感器傅里叶变换解调研究[J]. 光子学报, 2008, 37(4): 705−708.
Lei X H, Chen W M, Zhang P, et al. Demodulation method based on Fourier transform with cubic spline interpolation for optical fiber Fabry-Perot sensors[J]. Acta Photon Sin, 2008, 37(4): 705−708.
[28] 戴霞娟, 王鸣, 贲玉红. 快速傅里叶变换与线性调频Z变换联合算法在光纤法布里-珀罗传感器解调中的应用[J]. 光学学报, 2008, 28(7): 1241−1246. doi: 10.3321/j.issn:0253-2239.2008.07.004
Dai X J, Wang M, Ben Y H. Application of FFT algorithm associated with CZT in demodulation of Fabry-Pérot pressure sensors[J]. Acta Opt Sin, 2008, 28(7): 1241−1246. doi: 10.3321/j.issn:0253-2239.2008.07.004
[29] Hassanieh H, Indyk P, Katabi D, et al. Simple and practical algorithm for sparse Fourier transform[C]//Proceedings of the 2012 Annual ACM-SIAM Symposium on Discrete Algorithms, Kyoto, Japan, 2012: 1183–1194.
[30] 陶珺, 陈杨黎, 卢景琦. 基于稀疏快速傅里叶变换的光纤F-P传感器腔长解调方法[J]. 中国激光, 2018, 45(5): 0510001. doi: 10.3788/CJL201845.0510001
Tao J, Chen Y L, Lu J Q. Method of the cavity length demodulation for optical fiber F-P sensors based on sparse fast Fourier transform[J]. Chin J Lasers, 2018, 45(5): 0510001. doi: 10.3788/CJL201845.0510001
[31] 杨洋. 光纤F-P干涉传感器高分辨动态解调技术及应用研究[D]. 大连: 大连理工大学, 2021.
Yang Y. Research on high-resolution dynamic demodulation technique for fiber-optic Fabry-Perot sensor and its application[D]. Dalian: Dalian University of Technology, 2021.
[32] 章鹏, 朱永, 陈伟民. 光纤法布里-珀罗传感器腔长的傅里叶变换解调原理研究[J]. 光子学报, 2004, 33(12): 1449−1452.
Zhang P, Zhu Y, Chen W M. A study on Fourier transformation demodulating theory of the gap of optical fiber Fabry-Perot sensor[J]. Acta Photon Sin, 2004, 33(12): 1449−1452.
[33] 章鹏, 朱永, 唐晓初, 等. 基于傅里叶变换的光纤法布里-珀罗传感器解调研究[J]. 光学学报, 2005, 25(2): 186−189. doi: 10.3321/j.issn:0253-2239.2005.02.009
Zhang P, Zhu Y, Tang X C, et al. Demodulation of the optical fiber Fabry-Perot sensor based on Fourier transform[J]. Acta Opt Sin, 2005, 25(2): 186−189. doi: 10.3321/j.issn:0253-2239.2005.02.009
[34] Rao Y J, Jiang J, Zhou C X. Spatial-frequency multiplexed fiber-optic Fizeau strain sensor system with optical amplification[J]. Sens Actuators A Phys, 2005, 120(2): 354−359. doi: 10.1016/j.sna.2004.12.020
[35] Musa S M. Real-time signal processing and hardware development for a wavelength modulated optical fiber sensor system[D]. Blacksburg, Virginia: Virginia Polytechnic Institute and State University, 1997.
[36] Yang H D, Tong X L, Cui Z, et al. Demodulation algorithm for optical fiber F-P sensor[J]. Appl Opt, 2017, 56(26): 7450−7453. doi: 10.1364/AO.56.007450
[37] Lin Q, Chen L H, Li S, et al. A high-resolution fiber optic accelerometer based on intracavity phase-generated carrier (PGC) modulation[J]. Meas Sci Technol, 2011, 22(1): 015303. doi: 10.1088/0957-0233/22/1/015303
[38] Jia P G, Wang D H. Self-calibrated non-contact fibre-optic Fabry-Perot interferometric vibration displacement sensor system using laser emission frequency modulated phase generated carrier demodulation scheme[J]. Meas Sci Technol, 2012, 23(11): 115201. doi: 10.1088/0957-0233/23/11/115201
[39] Jun H, Wang L, Li F, et al. An ameliorated phase generated carrier demodulation algorithm with low harmonic distortion and high stability[J]. J Lightwave Technol, 2010, 28(22): 3258−3265.
[40] Wang G Q, Xu T W, Li F. PGC demodulation technique with high stability and low harmonic distortion[J]. IEEE Photonics Technol Lett, 2012, 24(23): 2093−2096. doi: 10.1109/LPT.2012.2220129
[41] Yang X F, Chen Z H, Ng J H, et al. A PGC demodulation based on differential-cross-multiplying (DCM) and arctangent (ATAN) algorithm with low harmonic distortion and high stability[J]. Proc SPIE, 2012, 8421: 84215J.
[42] Zhang S, Zhang A L, Pan H G. Eliminating light intensity disturbance with reference compensation in interferometers[J]. IEEE Photonics Technol Lett, 2015, 27(17): 1888−1891. doi: 10.1109/LPT.2015.2444421
[43] Peng F, Hou L, Yang J, et al. An improved fixed phased demodulation method combined with phase generated carrier (PGC) and ellipse fitting algorithm[J]. Proc SPIE, 2015, 9620: 96200S.
[44] Volkov A V, Plotnikov M Y, Mekhrengin M V, et al. Phase modulation depth evaluation and correction technique for the PGC demodulation scheme in fiber-optic interferometric sensors[J]. IEEE Sens J, 2017, 17(13): 4143−4150. doi: 10.1109/JSEN.2017.2704287
[45] 孙韦, 于淼, 常天英, 等. 相位生成载波解调方法的研究[J]. 光子学报, 2018, 47(8): 0806004. doi: 10.3788/gzxb20184708.0806004
Sun W, Yu M, Chang T Y, et al. Research and improvement based on PGC demodulation method[J]. Acta Photon Sin, 2018, 47(8): 0806004. doi: 10.3788/gzxb20184708.0806004
[46] Nikitenko A N, Plotnikov M Y, Volkov A V, et al. PGC-Atan demodulation scheme with the carrier phase delay compensation for fiber-optic interferometric sensors[J]. IEEE Sens J, 2018, 18(5): 1985−1992. doi: 10.1109/JSEN.2018.2792540
[47] Hou C B, Guo S. Automatic carrier phase delay synchronization of PGC demodulation algorithm in fiber-optic interferometric sensors[J]. KSII Trans Internet Inf Syst, 2020, 14(7): 2891−2903.
[48] Acharya A, Kawade N. A Fabry-Perot interferometer-based fiber optic dynamic displacement sensor with an analog in-phase/quadrature generator[J]. IEEE Sens J, 2020, 20(24): 14764−14771. doi: 10.1109/JSEN.2020.3009587
[49] 江毅, 贾景善, 姜澜, 等. 一种光纤激光干涉型传感器的移相解调法: 105865500A[P]. 2016-08-17.
Jiang Y, Jia J S, Jiang L, et al. Phase shifting demodulation method of optical fiber laser interference type sensor: 105865500A[P]. 2016-08-17.
[50] 江毅, 张树桓. 光纤激光干涉测量技术在EFPI传感器信号解调中的研究进展[J]. 激光与光电子学进展, 2021, 58(13): 1306017. doi: 10.3788/LOP202158.1306017
Jiang Y, Zhang S H. Research progress on fiber optical laser interferometry in signal demodulation of EFPI sensor[J]. Laser Optoelectron Prog, 2021, 58(13): 1306017. doi: 10.3788/LOP202158.1306017
[51] Jia J S, Jiang Y, Cui Y. Phase demodulator for the measurement of extrinsic Fabry-Perot interferometric sensors with arbitrary initial cavity length[J]. IEEE Sens J, 2020, 20(7): 3621−3626. doi: 10.1109/JSEN.2019.2961370
[52] Liu Q, Jing Z G, Xia Z J, et al. Fiber-optic ultrasonic sensing via quasi-continuous quadrature frequency modulation[J]. IEEE Photonics Technol Lett, 2020, 32(21): 1385−1388. doi: 10.1109/LPT.2020.3019007
[53] 王付印. 基于F-P干涉仪的微型化光纤水声传感关键技术研究[D]. 长沙: 国防科学技术大学, 2015.
Wang F Y. Study on the key technology of extrinsic Fabry-Perot interferometer-based miniature fiber underwater acoustic sensing[D]. Changsha: National University of Defense Technology, 2015.
[54] Zhang X M, Liu Y X, Bae H, et al. Phase modulation with micromachined resonant mirrors for low-coherence fiber-tip pressure sensors[J]. Opt Express, 2009, 17(26): 23965−23974. doi: 10.1364/OE.17.023965
[55] Wang F Y, Xie J H, Hu Z L, et al. Interrogation of extrinsic Fabry-Perot sensors using path-matched differential interferometry and phase generated carrier technique[J]. J Lightwave Technol, 2015, 33(12): 2392−2397. doi: 10.1109/JLT.2014.2379943
[56] Cao C Y, Hu Z L, Xu P, et al. An improved PMDI-TDM structure for remotely interrogated optical fiber hydrophone arrays[J]. Proc SPIE, 2021, 11763: 1176361.
[57] 刘彬. 基于Fabry-Perot干涉仪的微型光纤声压传感器关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
Liu B. Research on key technologies of micro fiber acoustic sensor based on Fabry-Perot interferometer[D]. Harbin: Harbin Institute of Technology, 2017.
[58] 赵艳, 王代华. 用于光纤法布里-珀罗传感器腔长互相关解调的光楔的数学模型研究[J]. 光学学报, 2011, 31(1): 0106007. doi: 10.3788/AOS201131.0106007
Zhao Y, Wang D H. Mathematical model of optical wedges for cross-correlation demodulation of cavity length of optical fiber Fabry-Pérot sensors[J]. Acta Opt Sin, 2011, 31(1): 0106007. doi: 10.3788/AOS201131.0106007
[59] 江俊峰, 邹盛亮, 王双, 等. 空间扫描型光纤法布里-珀罗传感解调中信噪比的影响研究[J]. 光学学报, 2015, 35(11): 1106003. doi: 10.3788/AOS201535.1106003
Jiang J F, Zou S L, Wang S, et al. Research on signal-to-noise ratio effect in spatial scanning optical fiber Fabry-Perot sensing demodulation system[J]. Acta Opt Sin, 2015, 35(11): 1106003. doi: 10.3788/AOS201535.1106003
[60] Yu Z H, Tian Z P, Wang A B. Simple interrogator for optical fiber-based white light Fabry-Perot interferometers[J]. Opt Lett, 2017, 42(4): 727−730. doi: 10.1364/OL.42.000727
[61] 陈珂, 郭珉, 王泽霖, 等. 基于光学相关的光纤法布里-珀罗传感器解调仪[J]. 光子学报, 2018, 47(6): 0606001. doi: 10.3788/gzxb20184706.0606001
Chen K, Guo M, Wang Z L, et al. Optical correlation based demodulator for fiber-optic Fabry-Perot sensor[J]. Acta Photon Sin, 2018, 47(6): 0606001. doi: 10.3788/gzxb20184706.0606001
[62] 张瑶, 王可宁, 陈海滨, 等. 复合式光纤法布里-珀罗传感器非扫描相关解调系统[J]. 激光与光电子学进展, 2019, 56(13): 130603. doi: 10.3788/LOP56.130603
Zhang Y, Wang K N, Chen H B, et al. Non-scanning correlation demodulation system for compound optical fiber Fabry-Perot sensors[J]. Laser Optoelectron Prog, 2019, 56(13): 130603. doi: 10.3788/LOP56.130603
[63] Wang S, Liu T G, Jiang J F, et al. Zero-fringe demodulation method based on location-dependent birefringence dispersion in polarized low-coherence interferometry[J]. Opt Lett, 2014, 39(7): 1827−1830. doi: 10.1364/OL.39.001827
[64] Liu T G, Zhang C, Wang S, et al. Simultaneous measurement of pressure and temperature based on adjustable line scanning polarized low-coherence interferometry with compensation plate[J]. IEEE Photonics J, 2018, 10(4): 7104109.
[65] Yu L, Lang J J, Pan Y, et al. A hybrid demodulation method of fiber-optic Fabry-Perot pressure sensor[J]. Proc SPIE, 2013, 9044: 90441A.
[66] Si W R, Yao W Q, Guan H, et al. Numerical study of vibration characteristics for sensor membrane in transformer oil[J]. Energies, 2021, 14(6): 1662. doi: 10.3390/en14061662
[67] 张伟超, 赵洪, 楚雄. 基于非本征光纤法布里-珀罗干涉仪的局放声发射传感器设计[J]. 光学学报, 2015, 35(4): 0406002. doi: 10.3788/AOS201535.0406002
Zhang W C, Zhao H, Chu X. Partial discharge acoustic emission sensor design based on extrinsic fiber Fabry-Perot interferometer[J]. Acta Opt Sin, 2015, 35(4): 0406002. doi: 10.3788/AOS201535.0406002
[68] 张知先, 雷嘉丽, 陈伟根, 等. 基于多参量光纤F-P传感的变压器局部放电与油温传感方法[J]. 高电压技术, 2022, 48(1): 58−65.
Zhang Z X, Lei J L, Chen W G, et al. Transformer's partial discharge and oil temperature sensing method based on multi-parameter fiber optic F-P sensing[J]. High Voltage Eng, 2022, 48(1): 58−65.
[69] 曾祥楷, 饶云江, 余般梅, 等. 光纤应变、温度、振动同时测量新技术的研究[J]. 光子学报, 2001, 30(10): 1254−1258.
Zeng X K, Rao Y J, Yu B M, et al. Simultaneous static-strain, temperature and vibration measurement using a single fibre-optic sensor[J]. Acta Photon Sin, 2001, 30(10): 1254−1258.
[70] 王欢, 郑刚, 陈海滨, 等. 调频连续波激光干涉光纤温度传感器[J]. 光电工程, 2019, 46(5): 180506.
Wang H, Zheng G, Chen H B, et al. Frequency-modulated continuous-wave laser interferometric optical fiber temperature sensor[J]. Opto-Electron Eng, 2019, 46(5): 180506.
[71] Jia J S, Jiang Y, Huang J B, et al. Symmetrical demodulation method for the phase recovery of extrinsic Fabry-Perot interferometric sensors[J]. Opt Express, 2020, 28(7): 9149−9157. doi: 10.1364/OE.389501
[72] 王晶, 张子豪, 余鑫宇, 等. 法布里-珀罗干涉信号的小波变换相位补偿算法[J]. 光子学报, 2021, 50(7): 0706003.
Wang J, Zhang Z H, Yu X Y, et al. Phase compensation algorithm of wavelet transform for Fabry-Perot interference signals[J]. Acta Photon Sin, 2021, 50(7): 0706003.
[73] Liu W, Yang T Y, Shi Y J, et al. White light interference demodulation of optical fiber Fabry-Perot micro-pressure sensors based on the Karhunen-Loeve transform and singular value decomposition[J]. Opt Express, 2022, 30(4): 5618−5633. doi: 10.1364/OE.450548
[74] 陆海松, 章鹏, 陈伟民, 等. 光纤法珀应变传感器串并联混合复用的离散腔长变换解调研究[J]. 光子学报, 2007, 36(5): 842−846.
Lu H S, Zhang P, Chen W M, et al. Study on fiber Fabry-Perot strain sensors series and parallel mixed multiplexing with discrete gap transform[J]. Acta Photon Sin, 2007, 36(5): 842−846.
[75] Liu T, Wu M, Rao Y, et al. A multiplexed optical fibre-based extrinsic Fabry-Perot sensor system for in-situ strain monitoring in composites[J]. Smart Mater Struct, 1998, 7(4): 550−556. doi: 10.1088/0964-1726/7/4/016
[76] Liu T, Fernando G F. A frequency division multiplexed low-finesse fiber optic Fabry-Perot sensor system for strain and displacement measurements[J]. Rev Sci Instrum, 2000, 71(3): 1275−1278. doi: 10.1063/1.1150453
[77] 倪小琦. 光纤MEMS法布里-珀罗压力传感器的解调和复用[D]. 南京: 南京师范大学, 2007.
Ni X Q. Demodulation and multiplexing of fiber-optic MEMS Fabry-Perot Pressure Sensors[D]. Nanjing: Nanjing Normal University, 2007.
[78] Wang Z, Shen F B, Song L J, et al. Multiplexed fiber Fabry-Pérot interferometer sensors based on ultrashort Bragg gratings[J]. IEEE Photonics Technol Lett, 2007, 19(8): 622−624. doi: 10.1109/LPT.2007.894361
[79] 夏振杰. 可调谐激光器相移干涉术及其在多点光纤Fabry-Perot声波传感检测中的应用[D]. 大连: 大连理工大学, 2021.
Xia Z J. Tunable laser-based phase-shifting interferometry and its application in multi-point fiber-optic Fabry–Perot acoustic wave sensing and detection[D]. Dalian: Dalian University of Technology, 2021.
[80] Jones M E, Grace J L, Greene J A, et al. Multiplexed absolute strain measurements using extrinsic Fabry-Perot interferometers[J]. Proc SPIE, 1995, 2444: 267−275. doi: 10.1117/12.207682
[81] Chang C C, Sirkis J. Multiplexed optical fiber sensors using a single Fabry-Perot resonator for phase modulation[J]. J Lightwave Technol, 1996, 14(7): 1653−1663. doi: 10.1109/50.507941
[82] Li Z Q, Wang Z B. Study on a distributing Fabry-Perot measurement system[J]. Proc SPIE, 2002, 4927: 271−275. doi: 10.1117/12.471199
[83] 段雅楠, 王双, 江俊峰, 等. 光纤法珀传感解调方法研究进展[J]. 应用科学学报, 2021, 39(5): 793−808. doi: 10.3969/j.issn.0255-8297.2021.05.006
Duan Y N, Wang S, Jiang J F, et al. Research progress on demodulation methods of optical fiber Fabry-Perot sensor[J]. J Appl Sci-Electron Inform Eng, 2021, 39(5): 793−808. doi: 10.3969/j.issn.0255-8297.2021.05.006