-
摘要:
针对光纤布拉格光栅 (fiber Bragg grating, FBG)在温度测量应用中灵敏度低的问题,本文提出了一种基于高热膨胀系数EpoCore胶裹覆FBG传感器的全新固化增敏方法。采用COMSOL软件构建FBG传感器模型,并对其增敏前后的光栅栅区形变情况进行仿真,结果表明EpoCore胶增敏使FBG传感器的形变量比增敏前提升约10倍。利用紫外曝光技术直接对铥锡共掺光纤进行FBG刻写,并深入研究了EpoCore胶裹覆FBG传感器的固化工艺,当以120 ℃前烘2 h,紫外光照5 h,120 ℃后烘3 h时,EpoCore胶固化增敏型FBG的谐振峰随温度漂移具有较好的线性度,其温度灵敏度为90.45 pm/℃,相较未固化增敏的FBG传感器提升约9倍。采用该增敏型FBG传感器对−20 ℃、30 ℃、60 ℃和100 ℃的环境温度进行测量,均方根差均小于1.3 ℃。与传统金属镀膜和聚合物镀膜封装方法相比,EpoCore胶增敏效果更为显著,这为FBG传感器在温度测量领域的应用提供新的思路。
Abstract:In response to the problem of low sensitivity of fiber Bragg grating (FBG) in temperature measurement applications, this paper proposes a new solidification sensitization method based on an EpoCore adhesive-coated FBG sensor with a high thermal expansion coefficient. A FBG sensor model was constructed using COMSOL software, and the deformation of the grating area before and after sensitization was simulated. The results showed that EpoCore adhesive sensitization increased the deformation of the FBG sensor by about 10 times compared to before sensitization. Using ultraviolet exposure technology to write FBG onto thulium tin co-doped optical fibers directly and conducting in-depth research on the solidification process of EpoCore-coated FBG sensors, the resonant peak of the solidified and sensitized FBG exhibits good linearity with temperature drift when baked at 120 ℃ for 2 hours, irradiated with ultraviolet light for 5 hours, and baked at 120 ℃ for 3 hours. The temperature sensitivity is 90.45 pm/℃, about 9 times higher than the unsolidified and unsensitized FBG sensor. The sensitized FBG sensor is used to measure environment temperatures of −20 ℃, 30 ℃, 60 ℃ and 100 ℃, and the RMSE for these temperatures is less than 1.3 ℃. Compared with traditional metal coating and polymer coating packaging methods, EpoCore adhesive has a more significant sensitization effect, which provides a new idea for the application of FBG sensors in temperature measurement.
-
Overview: The temperature detection inside power equipment requires high-temperature sensitivity to prevent faults promptly. Fiber Bragg grating (FBG) sensors are widely used in temperature detection due to their low cost, strong resistance to electromagnetic interference, and excellent high-temperature stability. However, the temperature sensitivity of conventional single-mode FBG sensors is only around 10 pm/℃, which makes it challenging to meet the temperature measurement requirements in complex environments. Therefore, to improve the temperature sensitivity of FBG sensors, it is necessary to perform sensitization processing to adapt to more complex and diverse application scenarios. Currently, the sensitization methods for FBG sensors mainly include the metal structure coating method and polymer coating packaging methods. The metal structure coating packaging method is easy to operate and enhances the corrosion resistance of FBG sensors. However, due to the good conductivity of metals, their application in temperature detection inside power equipment is limited. This study aimed to meet the demand for temperature detection inside power equipment and selected polymers with high electrical resistivity as sensitizing materials. Based on the advantages of low optical loss, high resistivity, and good chemical stability of EpoCore adhesive, EpoCore adhesive is used for the solidification and sensitization of the FBG sensors. The FBG sensor model was constructed by COMSOL software, and the deformation of the grating region before and after the sensitization was simulated. The simulation results show that the deformation of FBG sensor is improved by about 10 times by EpoCore adhesive sensitization. The FBG sensor was prepared using the UV laser phase mask method, and the completed FBG sensor was placed inside a resin sleeve made by 3D printing. Conducting in-depth research on the solidification process of EpoCore-coated FBG sensors, the resonant peak of the solidified and sensitized FBG exhibits good linearity with temperature drift when baked at 120 ℃ for 2 hours, irradiated with ultraviolet light for 5 hours, and baked at 120 ℃ for 3 hours. The temperature sensitivity is 90.45 pm/℃, about 9 times higher than the unsensitized FBG sensor. In addition, temperature tests conducted using a fiber grating temperature measurement system at −20 ℃, 30 ℃, 60 ℃, and 100 ℃, and the RMSE for these temperatures is less than 1.3 ℃, which are verified the accuracy and stability of the sensitized FBG sensor. This article uses EpoCore adhesive to solidify and enhance the sensitivity of FBG sensors, and its effect is significantly better than traditional metal coating packaging and polymer coating packaging methods, providing a new idea for applying FBG sensors in the field of temperature measurement.
-
表 1 固化流程及参数
Table 1. Solidification process and parameters
前烘 紫外固化 后烘 第1次 120 ℃,2 h 1 h 120 ℃,1 h 第2次 / 4 h 120 ℃,2 h 表 2 不同材料的温度灵敏度对比
Table 2. Comparison of temperature sensitivity of different materials
材料类型 温度灵敏度/(pm/℃) 材料特点 EpoCore 90.49 热稳定性可达230 ℃,玻璃化转变温度大于180 ℃,热膨胀系数为6×10−5 /K 双酚A型二甘油酯[18] 48 适用于−180~25 ℃的FBG传感器增敏。热稳定性为200 ℃,
玻璃化转变温度只有80 ℃,热膨胀系数为4.5×10−5 /K左右E51[19] 63.03 适用于−153~55 ℃的FBG传感器增敏。玻璃化转变温度小于120 ℃,热膨胀系数为5×10−5 /K左右 GRC 20 CM[19] 69.4 适用于−153~55 ℃的FBG传感器增敏。玻璃化转变温度小于150 ℃,热膨胀系数为5×10−5 /K左右 PMMA[15] 39 适用于−196~30 ℃的FBG传感器增敏。玻璃化转变温度在105 ℃左右,
热膨胀系数为6.1×10−5 /K,但不能与光纤表面很好结合PDMS[16] 79.5 热膨胀系数大,为1.2×10−4 /K,但黏度高,弹性模量较小,为1 MPa 表 3 温度测量结果(单位: ℃)
Table 3. The first temperature measurement results (Unit: ℃)
1 2 3 4 5 平均值 最大测量误差 30 31.4 31.3 31.4 31.3 31.3 31.34 1.4 60 60.2 60.2 60.1 60.2 59.9 60.12 0.2 -
[1] 宋大高. 电力设备异常运行及事故处理策略研究[J]. 中国设备工程, 2017, (20): 192−193. doi: 10.3969/j.issn.1671-0711.2017.20.095
Song D G. Research on abnormal operation and accident handling strategies of power equipment[J]. China Plant Eng, 2017, (20): 192−193.
doi: 10.3969/j.issn.1671-0711.2017.20.095 [2] 蒋熙铭. 基于深度学习的变电设备热故障诊断方法研究[D]. 哈尔滨: 东北农业大学, 2022. https://doi.org/10.27010/d.cnki.gdbnu.2022.000519.
Jiang X M. Research on thermal fault diagnosis method of substation equipment based on deep learning[D]. Harbin: Northeast Agricultural University, 2022. https://doi.org/10.27010/d.cnki.gdbnu.2022.000519.
[3] 杨帆, 张利, 李楚涵, 等. 基于NaErF4@NaYF4上转换材料的高灵敏度变电站设备温度监测[J]. 人工晶体学报, 2024, 53 (8): 1434−1442. doi: 10.16553/j.cnki.issn1000-985x.2024.08.007
Yang F, Zhang L, Li C H, et al. High precision temperature monitoring of substation equipment based on NaErF4@NaYF4 upconversion material[J]. J Synth Cryst, 2024, 53 (8): 1434−1442. doi: 10.16553/j.cnki.issn1000-985x.2024.08.007
[4] Chen D Y, Zhao Q, Zheng Y, et al. Recent progress in lithium-ion battery safety monitoring based on fiber bragg grating sensors[J]. Sensors, 2023, 23 (12): 5609. doi: 10.3390/s23125609
[5] Riza M A, Go Y I, Harun S W, et al. FBG sensors for environmental and biochemical applications—a review[J]. IEEE Sens J, 2020, 20 (14): 7614−7627. doi: 10.1109/JSEN.2020.2982446
[6] 石磊, 涂兴华, 单正友, 等. 基于边缘滤波法检测的光纤光栅声波传感研究[J]. 光通信研究, 2023, (2): 40−44. doi: 10.13756/j.gtxyj.2023.02.007
Shi L, Tu X H, Shan Z Y, et al. Research on acoustic sensing of fiber Bragg grating based on edge filter detection[J]. Study Opt Commun, 2023, (2): 40−44. doi: 10.13756/j.gtxyj.2023.02.007
[7] 张燕君, 高海川, 张龙图, 等. 毛细铜管封装的内嵌式镀金光纤布拉格光栅温度和应力传感器[J]. 光电工程, 2021, 48 (3): 200195. doi: 10.12086/oee.2021.200195
Zhang Y J, Gao H C, Zhang L T, et al. Embedded gold-plated fiber Bragg grating temperature and stress sensors encapsulated in capillary copper tube[J]. Opto-Electron Eng, 2021, 48 (3): 200195. doi: 10.12086/oee.2021.200195
[8] 姚国珍, 尹伊萌, 李永倩, 等. 高精度光纤光栅波长解调方法研究综述[J]. 光通信研究, 2021, (4): 41−49. doi: 10.13756/j.gtxyj.2021.04.009
Yao G Z, Yin Y M, Li Y Q, et al. Summary of research on high precision fiber grating wavelength demodulation method[J]. Study Opt Commun, 2021, (4): 41−49. doi: 10.13756/j.gtxyj.2021.04.009
[9] 丁超, 代森, 黄勇林. 光纤布拉格光栅压力传感器的研究[J]. 光通信研究, 2010, (6): 46−47. doi: 10.3969/j.issn.1005-8788.2010.06.015
Ding C, Dai S, Huang Y L. Study on fiber Bragg grating pressure sensors[J]. Study Opt Commun, 2010, (6): 46−47. doi: 10.3969/j.issn.1005-8788.2010.06.015
[10] Nandi S, K C, Srinivas T, et al. Investigation on FBG based optical sensor for pressure and temperature measurement in civil application[J]. Optoelectron Lett, 2024, 20 (9): 531−536. doi: 10.1007/s11801-024-3190-6
[11] Ramalingam R, Atrey M D. Theoretical analysis and coating thickness determination of a dual layer metal coated FBG sensor for sensitivity enhancement at cryogenic temperatures[J]. IOP Conf Ser: Mater Sci Eng, 2017, 278: 012075. doi: 10.1088/1757-899X/278/1/012075
[12] Dang W J, Li Z R, Dan J X, et al. High sensitivity fiber Bragg grating (FBG) sensor based on hollow core silica tube (HCST) sensitization for gas pressure and temperature discrimination[J]. Opt Fiber Technol, 2023, 75: 103202. doi: 10.1016/j.yofte.2022.103202
[13] Qu Y P, Wang W J, Peng J K, et al. Sensitivity-enhanced temperature sensor based on metalized optical fiber grating for marine temperature monitoring[C]//2017 16th International Conference on Optical Communications and Networks, Wuzhen, China, 2017: 1–3. https://doi.org/10.1109/ICOCN.2017.8121293.
[14] Hong L, Wang J Y, Cai J X, et al. Substrate-type sensitized FBG temperature sensor[J]. Sens Rev, 2023, 43 (2): 83−91. doi: 10.1108/SR-03-2022-0156
[15] Sengupt D, Shankar M S, Reddy P S, et al. An improved low temperature sensing using PMMA coated FBG[C]//2011 Asia Communications and Photonics Conference and Exhibition, Shanghai, China, 2011: 1–5. https://doi.org/10.1117/12.904606.
[16] 魏昊文, 徐宁. 高灵敏度布喇格光纤光栅温度传感器[J]. 光通信技术, 2019, 43 (5): 1−4. doi: 10.13921/j.cnki.issn1002-5561.2019.05.001
Wei H W, Xu N. High sensitivity fiber Bragg grating temperature sensor[J]. Opt Commun Technol, 2019, 43 (5): 1−4. doi: 10.13921/j.cnki.issn1002-5561.2019.05.001
[17] Nedoma J, Fajkus M, Bednarek L, et al. Encapsulation of FBG sensor into the PDMS and its effect on spectral and temperature characteristics[J]. Adv Electr Electron Eng, 2016, 14 (4): 460−466. doi: 10.15598/aeee.v14i4.1786
[18] Sampath U, Kim D, Kim H, et al. Polymer-coated FBG sensor for simultaneous temperature and strain monitoring in composite materials under cryogenic conditions[J]. Appl Opt, 2018, 57 (3): 492−497. doi: 10.1364/AO.57.000492
[19] Cai Z J, Song H, Zhang Z Y, et al. Cryogenic temperature characteristics of thermosetting epoxy resins coated FBG sensors[C]//2021 IEEE Sensors Applications Symposium, Sundsvall, Sweden, 2021: 1–5. https://doi.org/10.1109/SAS51076.2021.9530153.
[20] Micro Resist Technology GmbH. EpoCore/EpoClad datasheet[EB/OL].[2016]. http://www.microresist.de.
[21] 贾振安, 史小宇, 禹大宽, 等. 光纤光栅温度传感增敏方法研究[J]. 红外, 2023, 44 (11): 31−35. doi: 10.3969/j.issn.1672-8785.2023.11.005
Jia Z A, Shi X Y, Yu D K, et al. Research on sensitization method for fiber Bragg grating temperature sensing[J]. Infrared, 2023, 44 (11): 31−35. doi: 10.3969/j.issn.1672-8785.2023.11.005
[22] Irawan D, Ramadhan K, Saktioto T, et al. An optimum design of high sensitivity PMMA-coated FBG sensor for temperature measurement[J]. TELKOMNIKA (Telecommun Comput Electron Control), 2023, 21 (2): 382−389. doi: 10.12928/telkomnika.v21i2.22746
[23] Chen J L, Wang J H, Li X Y, et al. Monitoring of temperature and cure-induced strain gradient in laminated composite plate with FBG sensors[J]. Compos Struct, 2020, 242: 112168. doi: 10.1016/j.compstruct.2020.112168
[24] Liang Z H, Wang X, Ma Y L, et al. Dual-FBG arrays hybrid measurement technology for mechanical strain, temperature, and thermal strain on composite materials[J]. Phys Scr, 2023, 98 (11): 115515. doi: 10.1088/1402-4896/acfeb6
[25] 刘明尧, 张伟伟, 宋涵. 低温环境下FBG温度传感特性研究[J]. 半导体光电, 2022, 43 (2): 327−331. doi: 10.16818/j.issn1001-5868.2021100802
Liu M Y, Zhang W W, Song H. Study on temperature sensing characteristics of fbg in low temperature environment[J]. Semicond Optoelectron, 2022, 43 (2): 327−331. doi: 10.16818/j.issn1001-5868.2021100802
[26] Cai Y, Zhang B B, Wang J Y, et al. Research on a bimetallic-sensitized FBG temperature sensor[J]. Rev Sci Instrum, 2023, 94 (3): 035010. doi: 10.1063/5.0134374
[27] 韩笑笑, 员琳, 樊琳琳, 等. FBG封装材料热膨胀系数对温度传感精度的影响[J]. 半导体光电, 2019, 40 (3): 375−379. doi: 10.16818/j.issn1001-5868.2019.03.016
Han X X, Yuan L, Fan L L, et al. The influence of thermal expansion coefficient of FBG packaging material on temperature sensing accuracy[J]. Semicond Optoelectron, 2019, 40 (3): 375−379. doi: 10.16818/j.issn1001-5868.2019.03.016
[28] Meyer J, Nedjalkov A, Kelb C, et al. Manufacturing and characterization of femtosecond laser-inscribed Bragg grating in polymer waveguide operation in an IR-A wavelength range[J]. Sensors, 2020, 20 (1): 249. doi: 10.3390/s20010249
[29] 顾宏灿, 姚高飞, 黄俊斌, 等. 基于相位掩模板的常规光纤制备弱反射光栅[J]. 激光技术, 2022, 46 (2): 149−154. doi: 10.7510/jgjs.issn.1001-3806.2022.02.001
Gu H C, Yao G F, Huang J B, et al. Fabrication of weak fiber Bragg grating with conventional fiber based on phase mask[J]. Laser Technol, 2022, 46 (2): 149−154. doi: 10.7510/jgjs.issn.1001-3806.2022.02.001
[30] 王建江, 何霖, 顾灵卫, 等. 光纤内应力对低损耗单模光纤衰减影响的改善[J]. 光纤与电缆及其应用技术, 2020, (1): 31−32,35. doi: 10.19467/j.cnki.1006-1908.2020.01.009
Wang J J, He L, Gu L W, et al. Improvement of the effect of internal stress in optical fibers on attenuation of low loss single-mode optical fibers[J]. Opt Fiber Electr Cable Their Appl, 2020, (1): 31−32,35.
doi: 10.19467/j.cnki.1006-1908.2020.01.009 [31] 张登攀, 郑艳, 王瑨, 等. FBG温度传感器交叉敏感问题的研究[J]. 大气与环境光学学报, 2016, 11 (3): 226−233. doi: 10.3969/j.issn.1673-6141.2016.03.009
Zhang D P, Zheng Y, Wang J, et al. Investigation of cross-sensitivity of fiber Bragg grating temperature sensor[J]. J Atmos Environ Opt, 2016, 11 (3): 226−233. doi: 10.3969/j.issn.1673-6141.2016.03.009
[32] 肖正兴. 基于FBGA的光纤光栅解调及应变监测研究[D]. 马鞍山: 安徽工业大学, 2019. https://doi.org/10.27790/d.cnki.gahgy.2019.000678.
Xiao Z X. Demodulation of fiber Bragg grating based on FBGA and research on strain monitoring[D]. Ma'anshan: Anhui University of Technology, 2019. https://doi.org/10.27790/d.cnki.gahgy.2019.000678.
[33] 郭嘉明, 吴旭东, 林诗涛, 等. 基于多参数耦合的蓄冷温控箱冷板对流换热参数优化[J]. 农业工程学报, 2021, 37 (19): 228−235. doi: 10.11975/j.issn.1002-6819.2021.19.026
Guo J M, Wu X D, Lin S T, et al. Parameter optimization on convective heat transfer of cold plate for cold storage temperature control box based on multi-parameter coupling[J]. Trans Chin Soc Agric Eng, 2021, 37 (19): 228−235. doi: 10.11975/j.issn.1002-6819.2021.19.026