五自由度测量中直线度现场标定方法研究

苏宇浩,段发阶,蒋佳佳,等. 五自由度测量中直线度现场标定方法研究[J]. 光电工程,2020,47(9):190451. doi: 10.12086/oee.2020.190451
引用本文: 苏宇浩,段发阶,蒋佳佳,等. 五自由度测量中直线度现场标定方法研究[J]. 光电工程,2020,47(9):190451. doi: 10.12086/oee.2020.190451
Su Y H, Duan F J, Jiang J J, et al. Research on field calibration method of straightness in five-degree-of-freedom measurement[J]. Opto-Electron Eng, 2020, 47(9): 190451. doi: 10.12086/oee.2020.190451
Citation: Su Y H, Duan F J, Jiang J J, et al. Research on field calibration method of straightness in five-degree-of-freedom measurement[J]. Opto-Electron Eng, 2020, 47(9): 190451. doi: 10.12086/oee.2020.190451

五自由度测量中直线度现场标定方法研究

  • 基金项目:
    国家重点研发计划资助项目(2017YFF0204800);天津市自然科学基金资助项目(17JCQNJC01100);水下信息与控制重点实验室开放研究资助项目(6142218081811);装备预研领域基金资助项目(61405180505, 61400040303);国家自然科学基金资助项目(51775377, 61505140);中国科协“青年人才托举工程”资助项目(2016QNRC001)
详细信息
    作者简介:
    *通讯作者: 蒋佳佳(1986-),男,博士,副教授,主要从事激光及光电测试技术、水生检测等的研究。E-mail:jiajiajiang@tju.edu.cn
  • 中图分类号: TH741

Research on field calibration method of straightness in five-degree-of-freedom measurement

  • Fund Project: Supported by National Key R&D Program of China (2017YFF0204800), the Tianjin Natural Science Foundations of China (17JCQNJC01100), Science and Technology on Underwater Information and Control Laboratory (6142218081811), Equipment Pre-Research Field Fund (61405180505, 61400040303), National Natural Science Foundations of China (51775377, 61505140), Young Elite Scientists Sponsorship Program By China Association for Science and Technology (2016QNRC001)
More Information
  • 直线度现场标定是保证其在线测量精度的重要方法。在收发一体式激光五自由度测量结构的基础上,针对直线度现场标定中标定平台引入的阿贝误差和角锥棱镜成像误差,建立了直线度现场标定模型。根据该标定模型并结合五自由度测量装置的角度测量结果,提出一种直线度现场标定误差补偿方法。实验表明,该标定方法使标定系数误差减小到0.2%以内,有效提高了直线度现场标定精度。

  • Overview: The multi-degree-of-freedom measurement is one of the important methods to realize the rapid and high-precision measurement of geometric errors of machine tools. Straightness measurement, as an important part in the multi-degree-of-freedom measurement, directly affects the accuracy of error measurement of the machine tools. At present, the straightness measurement based on laser collimation has been widely used in multi-degree-of-freedom measurement systems. When the measuring device is applied in the field, the field calibration can effectively eliminate the system error caused by the installation and adjustment of the measuring device, change of environmental parameters, stress, and abrasion in the field application. But the precision and stability of the calibration platform are uncertain in the field calibration of straightness, so the calibration error caused by the calibration platform cannot be ignored.

    In the five-degree-of-freedom measuring structure of laser transceiver, the straightness is measured based on the laser collimation principle, and the inverse reflection characteristics of the retroreflector. QPD1 (quadrant photodiode detector) is used to detect the location of the light spot. When using the laser interferometer to calibrate the straightness, the X-direction output and the Z-direction output of QPD1 need to be calibrated. In the field calibration of straightness, the angle of calibration platform would change. The Abbe error caused by the different measuring points of laser interferometer and straightness would affect the calibration accuracy, and it is determined by the Abbe deviation and the angle change of calibration platform. In addition, when the angle of calibration platform changes, the imaging error of retroreflector is part of the calibration errors according to the principle of parallel plate expansion of retroreflector. The field calibration model was established aiming at the calibration errors caused by the calibration platform. According to the calibration model and the angle measurement results of the five-degree-of-freedom measuring device, a compensation method of straightness calibration error was proposed.

    In the calibration experiment, the X-direction output and Z-direction output of QPD1 in the five-degree-of-freedom measuring device was calibrated with laser interferometer. A low-precision calibration platform was used to simulate the field calibration environment, and a high-precision calibration platform with negligible angle change was used for comparison experiment. Experimental results showed that the calibration coefficient error of the X-direction straightness was reduced from 3.5% to less than 0.1% and the calibration coefficient error of the Z-direction straightness was reduced from 4% to less than 0.2%. The Abbe error and the imaging error of retroreflector were eliminated and the calibration accuracy of straightness was effectively improved.

  • 加载中
  • 图 1  五自由度测量结构

    Figure 1.  The five-degree-of-freedom measurement structure

    图 2  QPD1的X向输出标定原理图

    Figure 2.  Schematic diagram of X-direction output calibration of QPD1

    图 3  QPD1的Z向输出标定原理图

    Figure 3.  Schematic diagram of Z-direction output calibration of QPD1

    图 4  阿贝偏位示意图

    Figure 4.  Diagram of Abbe deviation

    图 5  RR1展开图

    Figure 5.  Diagram of RR1 expansion

    图 6  RR1的成像误差

    Figure 6.  Imaging error of RR1

    图 7  QPD1的X向输出标定系统

    Figure 7.  Calibration system of X-direction output of QPD1

    图 8  高精度标定平台标定结果

    Figure 8.  Calibration results of high precision calibration platform

    图 9  低精度标定平台标定结果。(a)补偿前; (b)补偿后

    Figure 9.  Calibration results of low precision calibration platform. (a) Before compensation; (b) After compensation

    图 10  QPD1的Z向输出标定系统

    Figure 10.  Calibration system of Z-direction output of QPD1

    图 11  高精度标定平台标定结果

    Figure 11.  Calibration results of high precision calibration platform

    图 12  低精度标定平台标定结果。(a)补偿前;(b)补偿后

    Figure 12.  Calibration results of low precision calibration platform. (a) Before compensation; (b) After compensation

    图 13  二维直线度测量对比实验系统

    Figure 13.  Measurement and comparison experiment system of two-dimension straightness

    图 14  二维直线度测量对比实验结果。(a) X向直线度;(b) Z向直线度

    Figure 14.  Measurement and comparison experiment results of two-dimension straightness. (a) Straightness along X axis; (b) Straightness along Z axis

    表 1  高精度标定平台标定数据

    Table 1.  Calibration data of high precision calibration platform

    激光干涉仪测量值∆dx'/μm QPD1 X向输出测量值∆xQ
    -125.1 -109.192
    -99.48 -86.972
    -74.77 -65.187
    -49.36 -42.669
    -24.95 -21.426
    0.00 0.000
    25.58 21.682
    49.99 42.886
    75.41 65.364
    100.15 87.189
    125.23 109.037
    下载: 导出CSV

    表 2  低精度标定平台标定数据

    Table 2.  Calibration data of low precision calibration platform

    激光干涉仪测量值∆dx'/μm QPD1 X向输出测量值∆xQ 偏摆角测量值εzx/(μm/m)
    -123.85 -112.824 -658
    -99.4 -90.429 -525
    -74.05 -67.054 -380
    -49.66 -44.541 -260
    -24.02 -21.265 -129
    0.00 0.000 0
    24.98 22.105 107
    50.17 44.647 223
    76.21 68.135 336
    101.08 90.835 452
    126.08 113.493 518
    下载: 导出CSV

    表 3  高精度标定平台标定数据

    Table 3.  Calibration data of high precision calibration platform

    激光干涉仪测量值∆dz'/μm QPD1 Z向输出测量值∆zQ
    -124.65 -112.888
    -100.2 -90.493
    -74.85 -67.118
    -50.46 -44.305
    -24.82 -21.329
    -0.8 -0.064
    24.18 22.041
    49.37 44.583
    75.41 68.071
    100.28 91.171
    125.28 113.929
    下载: 导出CSV

    表 4  低精度标定平台标定数据

    Table 4.  Calibration data of low precision calibration platform

    激光干涉仪测量值∆dz'/μm QPD1 Z向输出测量值∆zQ 偏摆角测量值εxz/(μm/m)
    -125.07 -118.527 -203
    -100.21 -94.950 -207
    -74.75 -70.262 -153
    -50.16 -46.593 -108
    -25.01 -22.453 -58
    -0.2 1.161 -3
    24.99 24.487 27
    50.41 47.717 58
    75.29 70.558 86
    100.41 93.942 111
    124.89 117.077 134
    下载: 导出CSV
  • [1]

    焦明星, 冯其波, 王鸣, 等.激光传感与测量[M].北京:科学出版社, 2014.

    Jao M X, Feng Q B, Wang M, et al. Sensing and Measuring with Lasers[M]. Beijing: Science Press, 2014.

    [2]

    王明海, 娄志峰, 黄余彬, 等.一种导轨直线度与平行度测量系统的研究与应用[J].现代机械, 2018(5): 20–24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdjx201805005

    Wang M H, Lou Z F, Huang Y B, et al. Research and application of a measurement system of the straightness and parallelism for guide rail[J]. Modern Machinery, 2018(5): 20–24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdjx201805005

    [3]

    金涛, 刘景林, 杨卫, 等.线性位移台直线度高精密外差干涉测量装置[J].光学 精密工程, 2018, 26(7): 1570–1577. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjmgc201807002

    Jin T, Liu J L, Yang W, et al. High-precision straightness interferometer for linear moving stage[J]. Optics and Precision Engineering, 2018, 26(7): 1570–1577. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjmgc201807002

    [4]

    徐淼, 王新宽, 钱林弘.一种超精密大行程导轨直线度检测新方法[J].机床与液压, 2017, 45(10): 140–143. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jcyyy201710037

    Xu M, Wang X K, Qian L H. A new method for measurement of straightness of ultra-precise guideway with large distance[J]. Machine Tool & Hydraulics, 2017, 45(10): 140–143. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jcyyy201710037

    [5]

    曹益平, 刘明健, 刘晓丽, 等.大尺度二维直线度测量仪的研制[J].光电工程, 2004, 31(9): 57–60. doi: 10.3969/j.issn.1003-501X.2004.09.015

    Cao Y P, Liu M J, Liu X L, et al. Development of an instrument for measuring large range 2-D straightness[J]. Opto-Electronic Engineering, 2004, 31(9): 57–60. doi: 10.3969/j.issn.1003-501X.2004.09.015

    [6]

    Huang P S, Ni J. On-line error compensation of coordinate measuring machines[J]. International Journal of Machine Tools and Manufacture, 1995, 35(5): 725–738. doi: 10.1016/0890-6955(95)93041-4

    [7]

    Fan K C, Chen M J. A 6-degree-of-freedom measurement system for the accuracy of X-Y stages[J]. Precision Engineering, 2000, 24(1): 15–23. doi: 10.1016/S0141-6359(99)00021-5

    [8]

    Kuang C F, Hong E, Ni J. A high-precision five-degree-of-freedom measurement system based on laser collimator and interferometry techniques[J]. Review of Scientific Instruments, 2007, 78(9): 095105. doi: 10.1063/1.2786272

    [9]

    Bao C C, Li J K, Feng Q B, et al. Error-compensation model for simultaneous measurement of five degrees of freedom motion errors of a rotary axis[J]. Measurement Science and Technology, 2018, 29(7): 075004. doi: 10.1088/1361-6501/aac119

    [10]

    Ni J, Huang P S, Wu S M. A multi-degree-of-freedom measuring system for CMM geometric errors[J]. Journal of Manufacturing Science and Engineering, 1992, 114(3): 362–369. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JAKO199411919530537

    [11]

    Kuang C F, Feng Q B, Zhang B, et al. A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module[J]. Sensors and Actuators A: Physical, 2005, 125(1): 100–108. doi: 10.1016/j.sna.2005.05.022

    [12]

    Feng Q B, Zhang B, Cui C X, et al. Development of a simple system for simultaneously measuring 6DOF geometric motion errors of a linear guide[J]. Optics Express, 2013, 21(22): 25805–25819. doi: 10.1364/OE.21.025805

    [13]

    由凤玲, 冯其波, 张斌.基于共路光线漂移补偿的直线度测量[J].光学 精密工程, 2011, 19(3): 515–519. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjmgc201103003

    You F L, Feng Q B, Zhang B. Straightness error measurement based on common-path compensation for laser beam drift[J]. Optics and Precision Engineering, 2011, 19(3): 515–519. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjmgc201103003

    [14]

    吕勇, 冯其波, 刘立双, 等.基于多准直光的六自由度测量方法[J].红外与激光工程, 2014, 43(11): 3597–3602. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyjggc201411016

    Lv Y, Feng Q B, Liu L S, et al. Six-degree-of-freedom measurement method based on multiple collimated beams[J]. Infrared and Laser Engineering, 2014, 43(11): 3597–3602. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyjggc201411016

    [15]

    匡萃方, 冯其波, 刘斌, 等.一种共路补偿激光漂移的直线度测量方法[J].光电工程, 2005, 32(4): 32–34, 38. doi: 10.3969/j.issn.1003-501X.2005.04.009

    Kuang C F, Feng Q B, Liu B, et al. Measuring straightness method with common path compensation for laser drift[J]. Opto-Electronic Engineering, 2005, 32(4): 32–34, 38. doi: 10.3969/j.issn.1003-501X.2005.04.009

    [16]

    Saito Y, Gao W, Kiyono S. A single lens micro-angle sensor[J]. International Journal of Precision Engineering and Manufacturing, 2007, 8(2): 14–19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JAKO200714539080852

  • 加载中

(14)

(4)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2019-07-30
修回日期:  2019-11-08
刊出日期:  2020-09-15

目录

/

返回文章
返回