Research on fiber optic interferometric vibration measurement system based on internal modulation
-
摘要:
研制了一种基于内调制的光纤干涉振动测量系统。对分布式反馈激光器 (DFB)进行电流内调制,产生正弦频率调制单频激光。经光纤环形器与光纤微探头输出测量光对振动源进行干涉测量,返回的测量光与光纤微探头自反射的参考光进行干涉获得相位生成载波 (PGC)干涉信号。基于可编程逻辑门阵列 (FPGA)数字信号处理平台设计了PGC干涉信号解调算法,通过5参数椭圆拟合提取附加光强调制等因素引入的误差系数,对相位非线性误差进行补偿,实现振动位移的高精度测量,并采用快速傅里叶变换 (FFT)算法对振动位移频谱进行分析。进行了理论分析并搭建了振动测量系统,开展了干涉信号解调实验、位移测量实验和振动测量实验。实验结果表明,该系统的振动频率范围覆盖1142 Hz;在10 µm的位移步进实验中,测量结果的平均偏差为0.173 µm;振动频率的分辨力为1.221 Hz,谐波失真率小于1.36%;有望应用于精密振动测量领域。
Abstract:A fiber microprobe vibration measurement system based on internal modulation has been developed. A sinusoidal phase modulated laser source is generated by modulating the current of the distributed feedback laser (DFB) with a sinusoidal signal. After passing through a fiber circulator and a fiber microprobe, the output laser beam is used to measure the displacement of a vibration source. The returned laser beam interferes with the reference laser reflected by the fiber microprobe to generate a phase generated carrier (PGC) interference signal. A real-time PGC signal processing algorithm is designed through a programmable logic gate array (FPGA) digital computing platform. A five-parameter ellipse fitting method is unitized to extract the error items introduced by additional intensity modulation and other factors and compensate for the phase nonlinear error. The fast Fourier transform (FFT) algorithm is unitized to analyze the vibration displacement. Theoretical analysis was conducted and a vibration measurement system was built. A series of experiments were conducted, including PGC signal demodulation, displacement measurement, and vibration measurement. The experimental results show that the vibration frequency range of the system covers 1142 Hz. In the 10 µm step displacement experiment, the average deviation measured is 0.173 µm. The resolution of vibration measurement is 1.221 Hz, and the harmonic distortion is less than 1.36%. The measurement system is expected to be applied in the field of precise vibration measurement.
-
Key words:
- vibration measurement /
- internal modulation /
- microprobes /
- phase generated carrier /
- ellipse fitting
-
Overview: Vibration measurement is significant and widely used in the fields of spacecraft performance evaluation, material damage detection, machinery diagnostics, and acoustic sensing. Specifically, the vibration measurement based on a sinusoidal phase modulation laser interferometer has become a lasting research focus because of the advantages of strong anti-electromagnetic interference, high sensitivity, and large dynamic range. Sinusoidal phase modulation interferometers based on external modulation use adding piezoelectric ceramics or electro-optic modulators to the reference arm of the optical path. Introducing additional components will increase the hardware cost of the measurement system and result in a longer reference arm, which may introduce drift errors. Differently, sinusoidal phase modulation interferometers based on internal modulation directly modulate the laser current sinusoidally. The advantage is that no additional modulation devices need to be introduced. Besides, the collimator, spectroscope, and reference mirror in the measurement optical path can be integrated into a single fiber microprobe, improving practicality. However, it inevitably has periodic nonlinear errors caused by the phase modulation depth, carrier phase delay, and additional intensity modulation, which limits the accuracy of vibration measurement.
In this paper, a fiber microprobe vibration measurement system based on internal modulation has been developed to solve the problems mentioned above. A sinusoidal phase modulation laser source is generated by modulating the current of a distributed feedback laser (DFB) with a sinusoidal signal. After passing through a fiber circulator and a microprobe, the output laser beam is used to measure the displacement of the vibration source. The returned laser beam interferes with the reference laser reflected by the microprobe to generate a phase generated carrier (PGC) interference signal. A real-time interference signal processing algorithm is designed based on a programmable logic gate array (FPGA) digital computing platform. The error items introduced by additional intensity modulation and other factors are extracted through five-parameter ellipse fitting to compensate for the phase nonlinear error, and achieve high-precision measurement of vibration displacement. The fast Fourier transform (FFT) algorithm is used to analyze the vibration displacement. Theoretical analysis was conducted and a vibration measurement verification system was built. Interference signal demodulation experiments, step displacement measurement experiments, and vibration measurement experiments were carried out. The experimental results show that the vibration frequency range of the system covers 1142 Hz. In the 10-µm step displacement experiment, the average deviation measured is 0.173 µm. The resolution of vibration measurement is 1.221 Hz, and the harmonic distortion is less than 1.36%. The measurement system is expected to be applied in the field of precision vibration measurement.
-
-
图 5 半仿真测量结果。 (a) 0.5 kHz振动测量结果; (b) 0.5 kHz振动频谱; (c) 0.8 kHz振动测量结果; (d) 0.8 kHz振动频谱; (e) 1.0 kHz振动测量结果; (f) 1.0 kHz振动频谱
Figure 5. Measurement results of semi-simulation. (a) Vibration measurement results of 0.5 kHz; (b) Vibration spectrum of 0.5 kHz; (c) Vibration measurement results of 0.8 kHz; (d) Vibration spectrum of 0.8 kHz; (e) Vibration measurement results of 1.0 kHz; (f) Vibration spectrum of 1.0 kHz
图 10 振动测量结果。 (a) 25 Hz振动测量结果; (b) 25 Hz振动频谱; (c) 50 Hz振动测量结果; (d) 50 Hz振动频谱; (e) 600 Hz振动测量结果; (f) 600 Hz振动频谱
Figure 10. Results of vibration test. (a) Vibration measurement results of 25 Hz; (b) Vibration spectrum of 25 Hz; (c) Vibration measurement results of 50 Hz; (d) Vibration spectrum of 50 Hz; (e) Vibration measurement results of 600 Hz; (f) Vibration spectrum of 600 Hz
表 1 信号处理系统测试中的主要参数
Table 1. Main parameters in signal processing system testing
参数 数值 参数 数值 测量光强度I0 1 相位调制深度C 2.63 rad 光强调制系数m 0.1 空气折射率n 1.00032 调制频率fc 20 kHz 激光波长λ0 1550 nm 载波相位延迟φc 30 rad 振动幅度l 1 µm 光强调制相位延迟φm 18 rad 振动频率fv 0.5,0.8,1.0 kHz -
[1] 李亦佳, 王正方, 王静, 等. 基于光纤布拉格光栅振动传感器和极限学习机的工字钢梁损伤识别[J]. 中国激光, 2021, 48 (16): 1610004. doi: 10.3788/CJL202148.1610004
Li Y J, Wang Z F, Wang J, et al. Damage identification of I-Beam based on fiber Bragg grating vibration sensor and extreme learning machine[J]. Chin J Lasers, 2021, 48 (16): 1610004. doi: 10.3788/CJL202148.1610004
[2] 周朕蕊, 邱宗甲, 李康, 等. 光纤法布里-珀罗传感器的解调方法研究综述[J]. 光电工程, 2022, 49 (6): 210411. doi: 10.12086/oee.2022.210411
Zhou Z R, Qiu Z J, Li K, et al. Review on demodulation methods for optic fiber Fabry-Perot sensors[J]. Opto-Electron Eng, 2022, 49 (6): 210411. doi: 10.12086/oee.2022.210411
[3] 丁剑雯, 周文静, 于瀛洁. 数字全息内窥技术实现耳膜病态下的振动模态研究[J]. 中国激光, 2023, 50 (15): 1507204. doi: 10.3788/CJL230492
Ding J W, Zhou W J, Yu Y J. Vibration modes study of defective eardrum realized using digital holographic endoscopy[J]. Chin J Lasers, 2023, 50 (15): 1507204. doi: 10.3788/CJL230492
[4] 余快, 陈云高, 汪国平. 光诱导金属纳腔的相干声学振动及应用[J]. 光学学报, 2023, 43 (16): 1623015. doi: 10.3788/AOS230856
Yu K, Chen Y G, Wang G P. Laser excitation of coherent acoustic vibrations of metallic nanoresonators and their applications[J]. Acta Opt Sin, 2023, 43 (16): 1623015. doi: 10.3788/AOS230856
[5] Zhu J L, Li L. Monitoring mechanical vibration amplitude system design based on the PVDF piezoelectric film sensor[J]. Appl Mech Mater, 2014, 556−562. doi: 10.4028/www.scientific.net/AMM.556-562.2110
[6] 宋晓伟. 应变电测法测量钢轨纵向力的误差分析及改进[D]. 大连: 大连理工大学, 2012.
Song X W. Error analysis and improvement of rail longitudinal force measurement by strain electrical measuring method[D]. Dalian: Dalian University of Technology, 2012.
[7] 张博智, 刘柯, 刘琨, 等. 基于分布式光纤振动检测系统的动态方差阈值算法研究[J]. 光电工程, 2023, 50 (2): 220205. doi: 10.12086/oee.2023.220205
Zhang B Z, Liu K, Liu K, et al. Research on dynamic variance threshold algorithm based on distributed fiber vibration sensor system[J]. Opto-Electron Eng, 2023, 50 (2): 220205. doi: 10.12086/oee.2023.220205
[8] 孙朝明, 孙凯华, 葛继强. 超声换能器表面振动的激光干涉测量[J]. 中国激光, 2020, 47 (9): 0904006. doi: 10.3788/CJL202047.0904006
Sun C M, Sun K H, Ge J Q. Measurement of surface vibrations of ultrasonic transducers by laser interference method[J]. Chin. J. Lasers, 2020, 47 (9): 0904006. doi: 10.3788/CJL202047.0904006
[9] 张烈山, 李荣森, 兰益成, 等. 利用正弦相位调制干涉仪探测声辐射激励的固体表面微振动[J]. 中国激光, 2022, 49 (3): 0304001. doi: 10.3788/CJL202249.0304001
Zhang L S, Li R S, Lan Y C, et al. Detection of solid surface microvibration excited via acoustic radiation using sinusoidal phase modulation interferometer[J]. Chin J Lasers, 2022, 49 (3): 0304001. doi: 10.3788/CJL202249.0304001
[10] 王成, 梁宸, 皇甫胜男, 等. 基于激光外差干涉技术的非接触式光声信号检测研究[J]. 中国激光, 2024, 51 (3): 0307402. doi: 10.3788/CJL231357
Wang C, Liang C, Huangfu S N, et al. Research on non-contact photoacoustic signal detection based on laser heterodyne interferometry[J]. Chin J Lasers, 2024, 51 (3): 0307402. doi: 10.3788/CJL231357
[11] 朱静浩. 面向微珠逆反射目标的零差激光干涉测振关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
Zhu J H. Research on key technologies of laser vibrometry for micro-bead retro-reflection target[D]. Harbin: Harbin Institute of Technology, 2018.
[12] 杨沛钢, 贾宏志, 傅坤跃, 等. 基于正弦相位调制的光纤干涉位移测量系统研究[J]. 光学仪器, 2023, 45 (4): 1−8. doi: 10.3969/j.issn.1005-5630.2023.004.001
Yang P G, Jia H Z, Fu K Y, et al. Study on all-fiber sinusoidal phase modulation interferometer for displacement measurement[J]. Opt Instrum, 2023, 45 (4): 1−8. doi: 10.3969/j.issn.1005-5630.2023.004.001
[13] Karim F, Zhu Y P, Han M. Modified phase-generated carrier demodulation of fiber-optic interferometric ultrasound sensors[J]. Opt Express, 2021, 29 (16): 25011−25021. doi: 10.1364/OE.432237
[14] Sun Z S, Liu K, Jiang J F, et al. Dynamic phase extraction in an ameliorated distributed vibration sensor using a highly stable homodyne detection[J]. IEEE Sensors J, 2021, 21 (23): 27005−27014. doi: 10.1109/JSEN.2021.3122133
[15] 肖文哲, 程静, 张大伟, 等. 用于光纤干涉传感器的高稳定PGC解调技术[J]. 光电工程, 2022, 49 (3): 210368. doi: 10.12086/oee.2022.210368
Xiao W Z, Cheng J, Zhang D W, et al. High stability PGC demodulation technique for fiber-optic interferometric sensor[J]. Opto-Electron Eng, 2022, 49 (3): 210368. doi: 10.12086/oee.2022.210368
[16] Guo J H, Liu X J, Hu M L, et al. Elimination of parasitic interference effect in fiber-optic external sinusoidal phase-modulating interferometer based on Kalman filter[J]. Measurement, 2022, 187: 110334. doi: 10.1016/j.measurement.2021.110334
[17] Wu Y J, Li C R, Wang C, et al. Self-calibration phase demodulation scheme for stabilization based on an auxiliary reference fiber-optic interferometer and ellipse fitting algorithm[J]. Opt Express, 2023, 31 (3): 4639−4651. doi: 10.1364/OE.480428
[18] Gong Y F, Yu B L, Shi J H, et al. Ameliorted algorithm for PGC to eliminate the influence of carrier phase delay with FFT[J]. Opt Fiber Technol, 2024, 82: 103554. doi: 10.1016/j.yofte.2023.103554
[19] Volkov A V, Plotnikov M Y, Mekhrengin M V, et al. Phase modulation depth evaluation and correction technique for the PGC demodulation scheme in fiber-optic interferometric sensors[J]. IEEE Sensors J, 2017, 17 (13): 4143−4150. doi: 10.1109/JSEN.2017.2704287
[20] Ni C, Zhang M, Zhu Y, et al. Sinusoidal phase-modulating interferometer with ellipse fitting and a correction method[J]. Appl Opt, 2017, 56 (13): 3895−3899. doi: 10.1364/AO.56.003895
[21] Qu Z Y, Guo S, Hou C B, et al. Real-time self-calibration PGC-Arctan demodulation algorithm in fiber-optic interferometric sensors[J]. Opt Express, 2019, 27 (16): 23593−23609. doi: 10.1364/OE.27.023593
[22] Guo J H, Li D G, Liu X J, et al. Dimensionality-reduced iterative ellipse fitting algorithm for fiber-optic sinusoidal frequency modulation interferometer quadrature signal correction[J]. Opt Lasers Eng, 2024, 174: 107973. doi: 10.1016/j.optlaseng.2023.107973
[23] Dong Y S, Zhang J R, Fu H J, et al. High-speed and high-precision measurement of biaxial in-plane displacements: tens of nanometers principle error suppression in microprobe sensors[J]. Opt Express, 2024, 32: 15199−15214. doi: 10.1364/OE.515450
[24] Krauhausen M, Priem R, Claßen R, et al. Sub-micron inline thickness measurement of cold-rolled metal strips by multi-wavelength interferometry and laser triangulation[J]. Opt Express, 2023, 31 (26): 43804−43820. doi: 10.1364/OE.504102
[25] Dong Y S, Luo W R, Li W W, et al. Focus on sub-nanometer measurement accuracy: distortion and reconstruction of dynamic displacement in a fiber-optic microprobe sensor[J]. Light Adv Manuf, 2024, 5: 51. doi: 10.37188/lam.2024.051
[26] Dong Y S, Li W W, Zhang J R, et al. High-speed PGC demodulation model and method with subnanometer displacement resolution in a fiber-optic micro-probe laser interferometer[J]. Photon Res, 2024, 12 (5): 921−931. doi: 10.1364/PRJ.513576
[27] Shi Q P, Tian Q, Wang L W, et al. Performance improvement of phase-generated carrier method by eliminating laser-intensity modulation for optical seismometer[J]. Opt Eng, 2010, 49 (2): 024402. doi: 10.1117/1.3294878
[28] Tian C D, Wang L W, Zhang M, et al. Performance improvement of PGC method by using lookup table for optical seismometer[J]. Proc SPIE, 2009, 7503: 750348. doi: 10.1117/12.834107
[29] Hou C B, Guo S. Automatic carrier phase delay synchronization of PGC demodulation algorithm in fiber-optic interferometric sensors[J]. KSII Trans Internet Inf Syst, 2020, 14 (7): 2891−2903. doi: 10.3837/tiis.2020.07.009
[30] 张帅. 基于PGC解调算法消除光强扰动的光纤传感器研究[D]. 天津: 天津理工大学, 2016.
Zhang S. Research on eliminating light intensity disturbance in the fiber-optic sensor based on PGC demodulation algorithms[D]. Tianjin: Tianjin University of Technology, 2016.
[31] Zhang S H, Chen Y P, Chen B Y, et al. A PGC-DCDM demodulation scheme insensitive to phase modulation depth and carrier phase delay in an EOM-based SPM interferometer[J]. Opt Commun, 2020, 474: 126183. doi: 10.1016/j.optcom.2020.126183
[32] Dong Y S, Hu P C, Ran M, et al. Phase modulation depth setting technique of a phase-generated-carrier under AOIM in fiber-optic interferometer with laser frequency modulation[J]. Opt Express, 2020, 28 (21): 31700−31713. doi: 10.1364/OE.403448
[33] Dong Y S, Hu P C, Fu H J, et al. Long range dynamic displacement: precision PGC with sub-nanometer resolution in an LWSM interferometer[J]. Photon Res, 2022, 10 (1): 59−67. doi: 10.1364/PRJ.442057
[34] Yan L P, Chen Z Q, Chen B Y, et al. Precision PGC demodulation for homodyne interferometer modulated with a combined sinusoidal and triangular signal[J]. Opt Express, 2018, 26 (4): 4818−4831. doi: 10.1364/OE.26.004818
[35] Liao H, Xie J D, Yan L P, et al. Precision vibration measurement using differential phase-modulated homodyne interferometry[J]. Opt Lasers Eng, 2023, 169: 107695. doi: 10.1016/j.optlaseng.2023.107695
[36] 严利平, 周春宇, 谢建东, 等. 基于卡尔曼滤波的PGC解调非线性误差补偿方法[J]. 中国激光, 2020, 47 (9): 0904002. doi: 10.3788/CJL202047.0904002
Yan L P, Zhou C Y, Xie J D, et al. Nonlinear error compensation method for PGC demodulation based on Kalman filtering[J]. Chin J Lasers, 2020, 47 (9): 0904002. doi: 10.3788/CJL202047.0904002
[37] Zhang S H, Chen B Y, Yan L P, et al. Real-time normalization and nonlinearity evaluation methods of the PGC-arctan demodulation in an EOM-based sinusoidal phase modulating interferometer[J]. Opt Express, 2018, 26 (2): 605−616. doi: 10.1364/OE.26.000605
[38] Xie J D, Yan L P, Chen B Y, et al. Extraction of carrier phase delay for nonlinear errors compensation of PGC demodulation in an SPM interferometer[J]. J Lightwave Technol, 2019, 37 (13): 3422−3430. doi: 10.1109/JLT.2019.2917041
[39] Yan L P, Zhang Y D, Xie J D, et al. Nonlinear error compensation of PGC demodulation with the calculation of carrier phase delay and phase modulation depth[J]. J Lightwave Technol, 2021, 39 (8): 2327−2335. doi: 10.1109/JLT.2021.3049481
-