基于光流像素匹配的扫描显微相位测量轮廓术

王思远,刘元坤,于馨. 基于光流像素匹配的扫描显微相位测量轮廓术[J]. 光电工程,2024,51(11): 240194. doi: 10.12086/oee.2024.240194
引用本文: 王思远,刘元坤,于馨. 基于光流像素匹配的扫描显微相位测量轮廓术[J]. 光电工程,2024,51(11): 240194. doi: 10.12086/oee.2024.240194
Wang S Y, Liu Y K, Yu X. A scanning micro phase measuring profilometry based on optical flow pixel matching[J]. Opto-Electron Eng, 2024, 51(11): 240194. doi: 10.12086/oee.2024.240194
Citation: Wang S Y, Liu Y K, Yu X. A scanning micro phase measuring profilometry based on optical flow pixel matching[J]. Opto-Electron Eng, 2024, 51(11): 240194. doi: 10.12086/oee.2024.240194

基于光流像素匹配的扫描显微相位测量轮廓术

  • 基金项目:
    国家重点研发计划(2022YFF0712902)
详细信息
    作者简介:
    *通讯作者: 刘元坤,lyk@scu.edu.cn。
  • 中图分类号: TP391; O438

  • CSTR: 32245.14.oee.2024.240194

A scanning micro phase measuring profilometry based on optical flow pixel matching

  • Fund Project: Project supported by National Key Research and Development Program of China (2022YFF0712902)
More Information
  • 在扫描相位测量轮廓术中,需要先将不同位置的物体匹配到同一点,再根据相移算法提取相位信息,而像素匹配精度与相移算法均会影响测量精度。为此,采用显微系统,根据其远心光路特性实现物体移动量与像素移动量的等量转换;通过交替采集白场图像和条纹图像,由白场图像通过光流法实现精确的像素匹配,再根据物体匀速运动特点实现条纹图像的精确像素匹配;根据初始条纹周期选择基本符合满周期的N幅条纹图,由任意步数相移方法计算出截断相位分布,再通过概率密度函数搜索最佳条纹周期,进而得到准确的相位信息,完成物体形貌测量。实验表明,所提方法有效提高了测量精度,相移算法也适用于任意N (N≥3)幅图,在模拟工业流水线场景中物体的三维测量时,RMSE (均方根误差)可达0.008 mm左右。

  • Overview: In recent years, fringe projection profilometry has emerged as a powerful tool for measuring and inspecting the three-dimensional (3D) morphology of objects. Among them, phase measurement profilometry (PMP) has garnered significant attention due to its high precision. Traditionally, at least three deformed fringe images are required for phase retrieval. To achieve higher precision, even more deformed fringe images are typically needed. In industrial applications, such as inspections on production lines where new samples continuously flow in and out, or to measure large samples with a set of small fields of views for high precision. This necessitates a motion scheme to complete the inspection process. Therefore, it will be promising to integrate the phase-shifting process of PMP with lateral motion. This type of lateral scanning process has been validated in white light interferometry and structured illumination microscopy. This paper proposes a scanning microscopic PMP that combines phase shifting with object translation, reducing measurement complexity and enhancing measurement efficiency. In this design, the measuring unit is fixed and the measuring object is moved along the translation stage. The camera is synchronized with the translation stage and the switching of the white light and structured light illuminations. Then sequential images will be captured with one deformed image and one white light image continuously. The phase drilling process consists of two main steps. The first step is pixel matching, which is used to align the images captured at different positions. The white light images are used to find the amount of pixel shift by optical flow methods, which can reach a sub-pixel level precision via linear interpolation. Then the pixel matching of the fringe images will be fulfilled while we assume the translation is consistent. The second step is to decipher the phase with these matched fringe images. Here, an arbitrary N-step phase-shifting technique is adopted instead of the classical N-step phase-shifting approach. Moreover, a telecentric optical path system is employed to ensure consistency between the actual object movement and pixel shift. The initial phase shift is determined by the offset pixels and the initially estimated fringe period, which is optimized through a probability density function. The experiments in this paper compare static and dynamic results, with the static position fixed as the starting point for dynamic measurements to ensure consistent comparison. The results demonstrate the feasibility of the proposed method, achieving measurement accuracy comparable to traditional PMP systems, with a maximum measurement accuracy of 0.008 mm in planar validation experiments.

  • 加载中
  • 图 1  扫描PMP原理图

    Figure 1.  The schematic of scanning PMP

    图 2  不同周期计算的截断相位PDF曲线及其RMSE曲线。(a)不同周期计算的截断相位的概率密度分布;(b)标定的初始周期和最佳周期计算的结果对比;(c)不同周期计算结果的RMSE分布;(d)不同周期计算的截断相位与静态12步相移的RMSE

    Figure 2.  PDF distribution with different phase shift errors and their error curves. (a) The PDF of the wrapped phase calculated at different periods; (b) Comparison of the results of the period of calibration and the optimal period calculation; (c) RMSE distribution of calculation results at different periods; (d) RMSE between wrapped phase and static 12-steps phase-shift calculated at different periods

    图 3  所提方法流程图

    Figure 3.  Flowchart of the proposed method

    图 4  实验系统与待测对象

    Figure 4.  The experimental system and object

    图 5  采集图像,(a)条纹场;(b)白场

    Figure 5.  The fringe and the white field are collected

    图 6  硬币测量结果。(a, g),(b, h),(c, i)静态3、6和12步相移;(d, j) ,(e, k),(f, l)所提方法3、6和12步扫描相移结果

    Figure 6.  The measurement result of a coin. (a, h),(b, i),(c, j)3, 6, 12-step of classic phase shift; (d, k),(e, l),(f, m) Proposed method 3, 6, 12-step scanning phase shift

    图 7  不同扫描步数与静态相移的相位误差

    Figure 7.  Phase error of different scanning steps and static phase shift

    表 1  光流法计算得到的匹配量与相移量

    Table 1.  The matching quantity and phase-shift quantity calculated by optical flow method

    白场/第2k-1帧 1 3 5 7 9 11 13 15 17 19 21 23
    匹配量/pixel [0 0] [2.4 0.1] [4.6 0.1] [7.2 0.2] [9.4 0.2] [11.6 0.2] [14.2 0.2] [16.5 0.2] [18.7 0.2] [21.3 0.3] [23.5 0.3] [25.8 0.3]
    条纹场/第2k 2 4 6 8 10 12 14 16 18 20 22 24
    相移量/rad 0 0.656 1.257 1.967 2.568 3.169 3.880 4.508 5.109 5.819 6.420 7.048
    下载: 导出CSV

    表 2  不同步数扫描截断相位

    Table 2.  RMSE of different steps scan wrapped phase

    扫描步数RMSE/rad 参与计算的图像序号 硬币位置1 硬币位置2
    3步 2, 8, 16 0.0457 0.0386
    6步 2, 4, 6, 10, 14, 18 0.0319 0.0289
    12步 全部 0.0296 0.0262
    下载: 导出CSV

    表 3  不同高度平面的误差分析

    Table 3.  Error analysis of planes with different heights

    0.4 mm1.2 mm2 mm
    m1/mm0.39731.20021.9936
    m2/mm0.39671.19371.9907
    RMSE1/mm0.00950.00990.0087
    RMSE2/mm0.01200.01140.0116
    下载: 导出CSV
  • [1]

    楚冬娅, 张广汇, 宋仁杰, 等. 先验知识辅助的条纹投影动态三维形貌测量[J]. 光电工程, 2022, 49(8): 210449. doi: 10.12086/oee.2022.210449

    Chu D Y, Zhang G H, Song R J, et al. Priori knowledge assisted dynamic 3D shape measurement with fringe projection[J]. Opto-Electron Eng, 2022, 49(8): 210449. doi: 10.12086/oee.2022.210449

    [2]

    向卓龙, 张启灿, 吴周杰. 结构光投影三维面形测量及纹理贴图方法[J]. 光电工程, 2022, 49(12): 220169. doi: 10.12086/oee.2022.220169

    Xiang Z L, Zhang Q C, Wu Z J. 3D shape measurement and texture mapping method based on structured light projection[J]. Opto-Electron Eng, 2022, 49(12): 220169. doi: 10.12086/oee.2022.220169

    [3]

    应晓霖, 姚建云, 张晓松, 等. 采用LD的光源步进条纹投影三维测量系统[J]. 光电工程, 2021, 48(11): 210298. doi: 10.12086/oee.2021.210298

    Ying X L, Yao J Y, Zhang X S, et al. Fringe projection based three-dimensional measurement system by the light-source-stepping method using LD[J]. Opto-Electron Eng, 2021, 48(11): 210298. doi: 10.12086/oee.2021.210298

    [4]

    邵金凤, 倪育博, 孟召宗, 等. 基于离焦二值显示和条纹投影的复合表面三维测量方法[J]. 光电工程, 2024, 51(4): 240024. doi: 10.12086/oee.2024.240024

    Shao J F, Ni Y B, Meng Z Z, et al. Three-dimensional shape measurement of composite surface based on defocused binary display and fringe projection[J]. Opto-Electron Eng, 2024, 51(4): 240024. doi: 10.12086/oee.2024.240024

    [5]

    彭云峰, 何佳宽, 黄雪鹏, 等. 光学元件超精密磨抛加工技术研究与装备开发[J]. 光电工程, 2023, 50(4): 220097. doi: 10.12086/oee.2023.220097

    Peng Y F, He J K, Huang X P, et al. Ultra-precision grinding and polishing processing technology research and equipment development[J]. Opto-Electron Eng, 2023, 50(4): 220097. doi: 10.12086/oee.2023.220097

    [6]

    Su X Y, Chen W J. Fourier transform profilometry: a review[J]. Opt Lasers Eng, 2001, 35(5): 263−284. doi: 10.1016/S0143-8166(01)00023-9

    [7]

    Wu H T, Cao Y P, An H H, et al. Ultrafast spatial phase unwrapping algorithm with accurately correcting transient phase error[J]. Opt Lett, 2021, 46(24): 6091−6094. doi: 10.1364/OL.446022

    [8]

    吴开华, 王文杰. 植保无人机结构光视觉的障碍物检测方法[J]. 光电工程, 2018, 45(4): 170613. doi: 10.12086/oee.2018.170613

    Wu K H, Wang W J. Detection method of obstacle for plant protection UAV based on structured light vision[J]. Opto-Electron Eng, 2018, 45(4): 170613. doi: 10.12086/oee.2018.170613

    [9]

    戴子旭, 杨国辉, 高艺恒, 等. 基于随动三维视觉的大位移测量方法研究[J]. 光学学报, 2024, 44(19): 1912002. doi: 10.3788/AOS240858

    Dai Z X, Yang G H, Gao Y H, et al. Research on large displacement measurement method based on servo 3D vision[J]. Acta Opt Sin, 2024, 44(19): 1912002. doi: 10.3788/AOS240858

    [10]

    王启江, 刘元坤, 魏振东, 等. 面向高反物体的区域映射自适应条纹投影方法[J]. 激光杂志, 2024, 45(5): 34−40. doi: 10.14016/j.cnki.jgzz.2024.05.034

    Wang Q J, Liu Y K, Wei Z D, et al. Adaptive fringe projection algorithm based on region mapping for high-reflectivity surfaces[J]. Laser J, 2024, 45(5): 34−40. doi: 10.14016/j.cnki.jgzz.2024.05.034

    [11]

    Zhai A P, Cao Y P, Huang Z F. On-line phase measuring profilometry based on a single frame of deformed pattern[J]. Optik, 2012, 123(14): 1311−1315. doi: 10.1016/j.ijleo.2011.11.013

    [12]

    吴海涛, 曹益平, 李洋, 等. 基于改进网格运动统计特征的在线三维测量[J]. 光子学报, 2021, 50(1): 0112002. doi: 10.3788/gzxb20215001.0112002

    Wu H T, Cao Y P, Li Y, et al. Online three-dimension measurement based on improved grid motion statistical features[J]. Acta Photonica Sin, 2021, 50(1): 0112002. doi: 10.3788/gzxb20215001.0112002

    [13]

    Wu Y C, Cao Y P, Lu M T, et al. An on-line phase measuring profilometry based on modulation[J]. Opt Appl, 2012, 42(1): 31−41. doi: 10.5277/oa120103

    [14]

    彭旷, 曹益平, 武迎春, 等. 基于低调制度特征的在线三维测量方法[J]. 中国激光, 2013, 40(7): 0708006. doi: 10.3788/cjl201340.0708006

    Peng K, Cao Y P, Wu Y C, et al. On-line three-dimensional measurement method based on low modulation feature[J]. Chin J Lasers, 2013, 40(7): 0708006. doi: 10.3788/cjl201340.0708006

    [15]

    张文雪, 罗一涵, 刘雅卿, 等. 基于主动位移成像的图像超分辨率重建[J]. 光电工程, 2024, 51(1): 230290. doi: 10.12086/oee.2024.230290

    Zhang W X, Luo Y H, Liu Y Q, et al. Image super-resolution reconstruction based on active displacement imaging[J]. Opto-Electron Eng, 2024, 51(1): 230290. doi: 10.12086/oee.2024.230290

    [16]

    喻睿智, 曹益平. 一种采用相位测量轮廓术的工件在线三维检测方法[J]. 光子学报, 2008, 37(6): 1139−1143.

    Yu R Z, Cao Y P. A three dimensional on-line inspecting method for workpiece by PMP[J]. Acta Photonica Sin, 2008, 37(6): 1139−1143.

    [17]

    郑旭, 曹益平, 李坤. 基于调制度层析的在线三维测量方法[J]. 光学学报, 2010, 30(9): 2573−2577. doi: 10.3788/AOS20103009.2573

    Zheng X, Cao Y P, Li K. An on-line 3D measurement method based on modulation delamination[J]. Acta Opt Sin, 2010, 30(9): 2573−2577. doi: 10.3788/AOS20103009.2573

    [18]

    许幸芬, 曹益平, 彭旷. 基于相位预测的在线三维测量像素匹配方法[J]. 光学学报, 2016, 36(6): 0612005. doi: 10.3788/AOS201636.0612005

    Xu X F, Cao Y P, Peng K. Pixel matching method in on-line three-dimensional measurement based on phase prediction[J]. Acta Opt Sin, 2016, 36(6): 0612005. doi: 10.3788/AOS201636.0612005

    [19]

    马颂德, 张正友. 计算机视觉: 计算理论与算法基础[M]. 北京: 科学出版社, 1998.

    [20]

    Liu Y K, Yu X, Xue J P, et al. A flexible phase error compensation method based on probability distribution functions in phase measuring profilometry[J]. Opt Laser Technol, 2020, 129: 106267. doi: 10.1016/j.optlastec.2020.106267

  • 加载中

(8)

(3)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2024-08-19
修回日期:  2024-09-25
录用日期:  2024-09-26
刊出日期:  2024-11-25

目录

/

返回文章
返回