基于超材料的光学太阳反射镜的研究

赵颂,刘昱轩,张恒,等. 基于超材料的光学太阳反射镜的研究[J]. 光电工程,2024,51(11): 240186. doi: 10.12086/oee.2024.240186
引用本文: 赵颂,刘昱轩,张恒,等. 基于超材料的光学太阳反射镜的研究[J]. 光电工程,2024,51(11): 240186. doi: 10.12086/oee.2024.240186
Zhao S, Liu Y X, Zhang H, et al. Study of optical solar mirrors based on metamaterials[J]. Opto-Electron Eng, 2024, 51(11): 240186. doi: 10.12086/oee.2024.240186
Citation: Zhao S, Liu Y X, Zhang H, et al. Study of optical solar mirrors based on metamaterials[J]. Opto-Electron Eng, 2024, 51(11): 240186. doi: 10.12086/oee.2024.240186

基于超材料的光学太阳反射镜的研究

  • 基金项目:
    国家自然科学基金资助项目(62105131);太原科技大学研究生联合培养示范基地项目(JD2022007);晋中市科技重点研发项目(Y201027)
详细信息
    作者简介:
    *通讯作者: 赵亚丽,yaliz12@163.com 李旭峰,xfli@tyust.edu.cn。
  • 中图分类号: O436

  • CSTR: 32245.14.oee.2024.240186

Study of optical solar mirrors based on metamaterials

  • Fund Project: Project supported by the National Natural Science Foundation of China (62105131), Taiyuan University of Science and Technology Postgraduate Joint Cultivation Demonstration Base Project (JD2022007), and Jinzhong Municipal Science and Technology Key Research and Development Project (Y201027)
More Information
  • 研究了一种基于超材料的光学太阳反射镜(optical solar reflector, OSR),其由掺铝氧化锌(AZO)超表面、MgF2介质层和Ag金属反射层三层结构组成。在热红外AZO超表面激发表面等离激元共振增强电磁吸收,MgF2介质层介电常数的稳定性减少了吸收振荡带来的反射,在可见光照射下AZO超表面和MgF2介质层的透明特性可降低太阳辐射损耗,Ag金属反射层可有效抑制透射。仿真结果表明,优化后的OSR在0.3~2.5 µm内有17.6%的低太阳吸收率,在2.5~30.0 µm内有86.5%的高红外发射率。此外,偏振和入射角度对其性能影响较小。该结构在红外波段实现了较好的吸收,在红外热成像、辐射制冷等领域也具有潜在应用价值。

  • Overview: Optical solar reflector (OSR), also known as a secondary surface mirror, has low absorption and high reflection of the solar spectrum in the 0.3~2.5 µm band, and strong absorption (emission) of the infrared spectrum in the 2.5~30 µm band. OSR is used on the outer surface of spacecraft radiator panels to reflect the solar spectrum radiation and radiate the heat from the radiator panels in the form of infrared, which plays a vital role in the thermal control of spacecraft.

    The traditional OSR consists of quartz and metal reflective layers. Quartz has excellent optical and thermal properties; however, quartz is easy to break during processing, and the specific gravity increases the satellite launch cost. At present, our satellite thermal control coatings are mainly various paint-type white lacquers, which can meet the spaceflight requirements. However, the white paint has a large gap rate and is easily contaminated, leading to performance degradation. With the expanding depth and breadth of deep space exploration, the thermal control materials need to be adapted to the new space environment. It is difficult to find a natural material that combines both low absorption in the solar spectrum and high emission in the infrared, thus requiring the use of metasurfaces with artificially designed structures.

    Currently, most of the research focuses on enhancing the IR emissivity or reducing the solar absorptivity alone, since both properties of a material are often jointly affected by its physical and spectral properties. When one parameter is increased, the other is also increased, which is detrimental to the OSR. In this paper, an OSR constructed from an AZO (aluminum-doped zinc oxide) metasurface, MgF2 dielectric layer, and Ag metal reflective layer is designed by considering both properties simultaneously. The transparent properties of AZO and MgF2 reduce the visible absorption and enable lower solar absorptivity. Most of the materials show strong perturbations in spectral absorption in the mid-infrared (MI) band, due to the complex dielectric constants. The trough position brings additional reflections, leading to a decrease in IR emissivity. At the same time, the stability of the dielectric constant of MgF2 in the IR band does not affect its interference conditions as a λ/4 spacer, and the absorption bandwidth and stability ensure a high IR emissivity. The optimized OSR achieves a low solar absorptivity of 17.6% in the UV to NIR and an IR emissivity of 86.5% in the thermal IR band.

  • 加载中
  • 图 1  太阳反射镜结构图。 (a)阵列图;(b)单个单元俯视图;(c)单个单元侧视图

    Figure 1.  Structure of the optical solar reflector. (a) Array graph; (b) Top view of individual unit; (c) Side view of individual unit

    图 2  AZO超表面OSR的光谱吸收和300 K、5777 K时黑体辐射密度分布

    Figure 2.  Spectral absorption of OSR on the AZO metasurface and blackbody radiation density distributions at 300 K and 5777 K

    图 3  AZO超表面周期p分别为1.1 µm、1.3 µm和1.5 µm时OSR的光谱吸收曲线

    Figure 3.  Spectral absorption curves of OSR for the AZO metasurface period p of 1.1 µm, 1.3 µm, and 1.5 µm, respectively

    图 4  AZO超表面在不同特征尺寸时OSR的电场分布

    Figure 4.  Electric field distributions of OSR at different feature scales for AZO metasurfaces

    图 5  尺寸l分别为1.1 µm、1.2 µm、1.25 µm、1.3 µm时结构的吸收光谱

    Figure 5.  Absorption spectra of the structure at dimensions of l = 1.1 µm, 1.2 µm, 1.25 µm, and 1.3 µm, respectively

    图 6  介质层厚度分别为1.2 µm、1.4 µm、1.6 µm、1.8 µm的吸收光谱

    Figure 6.  Absorption spectra of dielectric-layer thicknesses of 1.2 µm, 1.4 µm, 1.6 µm, and 1.8 µm, respectively

    图 7  正入射时TE偏振和TM偏振对应的吸收光谱

    Figure 7.  Absorption spectra corresponding to TE polarization and TM polarization at normal incidence

    图 8  TE偏振时不同入射角的吸收光谱

    Figure 8.  Absorption spectra at different angles of incidence for TE polarization

    图 9  TM偏振时不同入射角的吸收光谱

    Figure 9.  Absorption spectra at different angles of incidence for TM polarization

    表 1  超表面在不同尺寸下的吸收率α、发射率ε和吸收发射比α/ε

    Table 1.  Absorption rate α, emission rate ε, and absorption-to-emission α/ε of the metasurface for different size cases

    l/µmαεα/ε
    1.10 0.1770.7720.229
    1.20 0.1870.8470.221
    1.25 0.1910.8440.227
    1.30 0.1820.6950.262
    下载: 导出CSV

    表 2  不同介质层厚度对应的吸收发射比α/ε

    Table 2.  Absorption-to-emission ratios for different dielectric-layer thicknesses

    h2/µm1.21.4 1.6 1.8
    α0.1710.1860.1760.196
    ε0.8030.8540.8650.841
    α/ε0.2130.2180.2040.233
    下载: 导出CSV

    表 3  TE偏振时不同入射角的吸收率α和发射率ε

    Table 3.  Absorption rate α and emission rate ε for different angles of incidence at TE polarization

    Angle/°αε
    00.1760.865
    150.1910.861
    300.2030.839
    450.2040.775
    600.2100.624
    750.0960.367
    下载: 导出CSV

    表 4  TM偏振时不同入射角的吸收率α和发射率ε

    Table 4.  Absorption rate α and emission rate ε for different angles of incidence at TM polarization

    Angle/°αε
    00.1740.865
    150.1830.858
    300.1910.830
    450.1980.761
    600.2130.625
    750.1070.398
    下载: 导出CSV
  • [1]

    陈帅朋. 基于超表面的热辐射特性研究[D]. 太原: 太原科技大学, 2023.

    [2]

    邢亚娟, 孙波, 高坤, 等. 航天飞行器热防护系统及防热材料研究现状[J]. 宇航材料工艺, 2018, 48(4): 9−15. doi: 10.12044/j.issn.1007-2330.2018.04.002

    Xing Y J, Sun B, Gao K, et al. Research status of thermal protection system and thermal protection materials for aerospace vehicles[J]. Aerosp Mater Technol, 2018, 48(4): 9−15. doi: 10.12044/j.issn.1007-2330.2018.04.002

    [3]

    李灿伦, 倪俊, 郭腾, 等. 无色聚酰亚胺薄膜二次表面镜的光学特性研究[J]. 真空, 2024, 61(3): 70−73. doi: 10.13385/j.cnki.vacuum.2024.03.12

    Li C L, Ni J, Guo T, et al. Research on optical properties of CPI film second surface mirror[J]. Vacuum, 2024, 61(3): 70−73. doi: 10.13385/j.cnki.vacuum.2024.03.12

    [4]

    Zhou C, Zhou H, He Y C, et al. Optical and irradiation-resistant properties of ITO films on F46 and PI substrates[J]. Trans Tianjin Univ, 2019, 25(2): 195−200 doi: 10.1007/s12209-018-0153-7

    [5]

    向艳超, 高鸿, 文明, 等. 航天器热控材料及应用研究进展[J]. 材料导报, 2022, 36(22): 22050193. doi: 10.11896/cldb.22050193

    Xiang Y C, Gao H, Wen M, et al. Review of spacecraft thermal control materials and applications[J]. Mater Rep, 2022, 36(22): 22050193. doi: 10.11896/cldb.22050193

    [6]

    李振宇, 韩海鹰, 刘炳清, 等. 长寿命载人航天器热控白漆退化性能试验研究[J]. 航天器环境工程, 2020, 37(1): 102−106. doi: 10.12126/see.2020.01.016

    Li Z Y, Han H Y, Liu B Q, et al. Tests of environmental degradation performance of thermal control white coating used for long-life manned spacecraft[J]. Spacecr Environ Eng, 2020, 37(1): 102−106. doi: 10.12126/see.2020.01.016

    [7]

    刘博, 谢鑫, 甘雪涛, 等. 全金属超表面在电磁波相位调控中的应用及进展[J]. 光电工程, 2023, 50(9): 230119 doi: 10.12086/oee.2023.230119

    Liu B, Xie X, Gan X T, et al. Applications and progress of all-metal metasurfaces in phase manipulation of electromagnetic waves[J]. Opto-Electron Eng, 2023, 50(9): 230119 doi: 10.12086/oee.2023.230119

    [8]

    朱潜, 田翰闱, 蒋卫祥. 电磁超表面对辐射波的调控与应用[J]. 光电工程, 2023, 50(9): 230115. doi: 10.12086/oee.2023.230115

    Zhu Q, Tian H W, Jiang W X. Manipulations and applications of radiating waves using electromagnetic metasurfaces[J]. Opto-Electron Eng, 2023, 50(9): 230115. doi: 10.12086/oee.2023.230115

    [9]

    Sun K, Riedel C A, Wang Y D, et al. Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft[J]. ACS Photonics, 2018, 5(2): 495−501 doi: 10.1021/acsphotonics.7b00991

    [10]

    Yildirim D U, Ghobadi A, Soydan M C, et al. Disordered and densely packed ITO nanorods as an excellent lithography-free optical solar reflector metasurface[J]. ACS Photonics, 2019, 6(7): 1812−1822 doi: 10.1021/acsphotonics.9b00636

    [11]

    Sun K, Xiao W, Wheeler C, et al. VO2 metasurface smart thermal emitter with high visual transparency for passive radiative cooling regulation in space and terrestrial applications[J]. Nanophotonics, 2022, 11(17): 4101−4114. doi: 10.1515/nanoph-2022-0020

    [12]

    Wu B Y, Mao Q J, Li H J, et al. Spacecraft smart radiation device with near-zero solar absorption based on cascaded photonic crystals[J]. Case Stud Therm Eng, 2023, 50: 103473 doi: 10.1016/J.CSITE.2023.103473

    [13]

    Xiao W, Dai P, Singh H J, et al. Flexible thin film optical solar reflectors with Ta2O5-based multimaterial coatings for space radiative cooling[J]. APL Photonics, 2023, 8(9): 090802 doi: 10.1063/5.0156526

    [14]

    Gaspari M, Mengali S, Simeoni M, et al. Metamaterial-based smart and flexible optical solar reflectors[J]. IOP Conf Ser Mater Sci Eng, 2023, 1287: 012003. doi: 10.1088/1757-899X/1287/1/012003

    [15]

    Qin Z, Meng D J, Yang F M, et al. Broadband long-wave infrared metamaterial absorber based on single-sized cut-wire resonators[J]. Opt Express, 2021, 29(13): 20275−20285 doi: 10.1364/OE.430068

    [16]

    Cueva A, Carretero E. Comparison of the optical properties of different dielectric materials (SnO2, ZnO, AZO, or SiAlNx) used in silver-based low-emissivity coatings[J]. Coatings, 2023, 13(10): 1709. doi: 10.3390/coatings13101709

    [17]

    Yang F M, Liang Z Z, Shi X Y, et al. Broadband long-wave infrared metamaterial absorbers based on germanium resonators[J]. Results Phys, 2023, 51: 106660 doi: 10.1016/J.RINP.2023.106660

    [18]

    Yang H U, D'Archangel J, Sundheimer M L, et al. Optical dielectric function of silver[J]. Phys Rev B, 2015, 91(23): 235137 doi: 10.1103/PhysRevB.91.235137

    [19]

    Shkondin E, Takayama O, Panah M E A, et al. Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials[J]. Opt Mater Express, 2017, 7(5): 1606−1627 doi: 10.1364/OME.7.001606

    [20]

    Gao H X, Zhou D P, Cui W L, et al. Ultraviolet broadband plasmonic absorber with dual visible and near-infrared narrow bands[J]. J Opt Soc Am A, 2019, 36(2): 264−269 doi: 10.1364/JOSAA.36.000264

    [21]

    刘坤, 刘媛媛, 邓芳, 等. 嵌入式长波红外超宽带完美吸收器[J]. 光学学报, 2021, 41(24): 2423002. doi: 10.3788/AOS202141.2423002

    Liu K, Liu Y Y, Deng F, et al. Long-wave infrared ultra-broadband perfect absorber with embedded structure[J]. Acta Opt Sin, 2021, 41(24): 2423002. doi: 10.3788/AOS202141.2423002

    [22]

    张婷, 郭泰铭, 闫俊伢, 等. 可调谐四宽带太赫兹吸收器设计[J]. 光学学报, 2024, 44(5): 0523002. doi: 10.3788/AOS231751

    Zhang T, Guo T M, Yan J Y, et al. Design of tunable four-broadband terahertz absorber[J]. Acta Opt Sin, 2024, 44(5): 0523002. doi: 10.3788/AOS231751

    [23]

    邵磊, 阮琦锋, 王建方, 等. 局域表面等离激元[J]. 物理, 2014, 43(5): 290−298. doi: 10.7693/wl20140501

    Shao L, Ruan Q F, Wang J F, et al. Localized surface plasmons[J]. Physics, 2014, 43(5): 290−298. doi: 10.7693/wl20140501

    [24]

    郑盛梅, 江孝伟, 江达飞, 等. 基于黑磷的双频带超材料吸收体及其传感特性[J]. 激光技术, 2023, 47(6): 846−853. doi: 10.7510/jgjs.issn.1001-3806.2023.06.017

    Zheng S M, Jiang X W, Jiang D F, et al. Dual-band metamaterial absorber based on black phosphorus and its sensing characteristics[J]. Laser Technol, 2023, 47(6): 846−853. doi: 10.7510/jgjs.issn.1001-3806.2023.06.017

  • 加载中

(10)

(4)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2024-08-10
修回日期:  2024-10-07
录用日期:  2024-10-08
刊出日期:  2024-11-25

目录

/

返回文章
返回