全金属超表面在电磁波相位调控中的应用及进展

刘博,谢鑫,甘雪涛,等. 全金属超表面在电磁波相位调控中的应用及进展[J]. 光电工程,2023,50(9): 230119. doi: 10.12086/oee.2023.230119
引用本文: 刘博,谢鑫,甘雪涛,等. 全金属超表面在电磁波相位调控中的应用及进展[J]. 光电工程,2023,50(9): 230119. doi: 10.12086/oee.2023.230119
Liu B, Xie X, Gan X T, et al. Applications and progress of all-metal metasurfaces in phase manipulation of electromagnetic waves[J]. Opto-Electron Eng, 2023, 50(9): 230119. doi: 10.12086/oee.2023.230119
Citation: Liu B, Xie X, Gan X T, et al. Applications and progress of all-metal metasurfaces in phase manipulation of electromagnetic waves[J]. Opto-Electron Eng, 2023, 50(9): 230119. doi: 10.12086/oee.2023.230119

全金属超表面在电磁波相位调控中的应用及进展

  • 基金项目:
    国家自然科学基金项目(62105263);博士后创新人才支持计划(BX20220388)
详细信息
    作者简介:
    *通讯作者: 谢鑫,xinxie@nwpu.edu.cn
  • 中图分类号: O436

Applications and progress of all-metal metasurfaces in phase manipulation of electromagnetic waves

  • Fund Project: Project supported by National Natural Science Foundation of China (62105263) and Postdoctoral Innovation Talent Support Program of China (BX20220388)
More Information
  • 全金属超表面是由亚波长金属单元所组成的结构阵列,其在调控电磁波相位方面展现出了效率高、带宽大等特点,并且相较于金属-介质混合型超表面,全金属超表面具有优良的热学和机械性能,如耐高温、强度大、延展性好等,这使得其可以应用于高温高压等极端复杂环境中。本文对近年来全金属超表面取得的研究进展进行了简要的归纳总结,主要介绍了其在构建高效、多功能平面光学器件以及多频谱电磁隐身中的应用,并对其未来的发展方向进行了展望。

  • Overview: Classical optical devices use changes in the refractive index of material or surface shape to accumulate the optical path difference like lenses and prisms, thus converging, diverging, and deflecting the light beam. To overcome these limitations of the large size and heavy weight of classical optical devices, researchers have proposed a new structure known as metasurfaces, an array of artificial designs at subwavelength scales. Metasurfaces can change the amplitude and phase of electromagnetic waves at interfaces, which provides a means to realize novel optical phenomena and the planarization and lightweight of optical devices. As a result, a series of metasurface-based flat devices have been demonstrated in the past few decades, including beam deflectors, holographic displays, vortex beam generators, etc. However, the efficiency of the initially designed functional devices based on metasurfaces is too low and is greatly limited in practical applications. To improve efficiency, low-loss dielectric materials with high refractive indexes are used to design metasurfaces, and the working efficiency is significantly improved. Additionally, metal–insulator–metal hybrid reflective metasurfaces can remarkably enhance efficiency. A new reflective metasurface composed of all-metal structures has been proposed recently. All-metal metasurfaces exhibit higher energy efficiency and larger operating bandwidth in phase modulation than metal-insulator-metal structures. Besides, since metallic materials generally have excellent thermal and mechanical properties, such as high-temperature resistance, high strength, and good flexibility, all-metal metasurfaces have the potential for applications in highly complex environments such as high temperatures and high pressures. All-metal metasurfaces have been applied in various fields of holographic display, beam deflection, electromagnetic invisibility, etc. In this paper, we focus on the applications of all-metal metasurfaces in planar optical devices and electromagnetic stealth and provide an outlook on its future development direction.

  • 加载中
  • 图 1  常见的几何相位型单元结构及全金属超表面。第一、二象限展示了金属纳米砖和金属光栅单元结构以及基于其设计的电磁隐身器件[36, 46]、全息显示器件[37]、涡旋光束发生器[47];第三象限展示了悬链线型金属单元结构以及基于其设计的圆偏振光分束器[48]、光聚焦器件[49];第四象限展示了具有多重旋转对称性的单元结构以及基于广义几何相位设计的波前调控器件[50]、旋转多普勒频移探测器件[51]

    Figure 1.  Schematic diagram of the typical geometric phase-type building blocks and all-metal metasurfaces. The first and second quadrants show the metallic nanobrick and grating unit structures and the designed electromagnetic stealth devices[36, 46], holographic display device[37], and vortex beam generator[47]; the third quadrant shows a catenary metal unit structure and the designed circularly polarized beam splitter[48], optical wave focusing device[49]; the fourth quadrant shows the unit structure with multi-fold rotational symmetry and the designed wavefront modulation device[50] and rotational Doppler effect detector[51]

    图 2  不同金属单元结构的仿真结果。(a)金属光栅的仿真结果[36];(b)金属纳米砖的仿真结果及其与MIM结构的对比[37];(c) S型单元结构的仿真结果[47];(d)不同C3结构的仿真对比[50]

    Figure 2.  Simulation results of different metal unit structures. (a) Simulation results of metal gratings[36]; (b) Simulation results of metal nanobricks and comparison with MIM-type structure [37]; (c) Simulation results of S-type unit structure [47]; (d) Simulation comparison of different C3 structures [50]

    图 3  基于悬链线结构的全金属超表面。(a)圆偏振波分束器[48];(b)聚焦透镜[49]

    Figure 3.  All-metal catenary metasurfaces. (a) Circular polarized beam splitter[48]; (b) Focusing lens[49]

    图 4  基于全金属超表面的多功能器件。(a, b)利用复振幅调控同时实现近场灰度显示和三维全息成像[70];(c, d)利用全金属超表面实现的结构色全息器件[71]

    Figure 4.  Multifunctional devices based on all-metal metasurfaces. (a, b) Simultaneous near-field grayscale display and three-dimensional holographic imaging enabled by complex amplitude modulation[70]; (c, d) Simultaneous full-color printing and holography enabled by all-metal metasurface[71]

    图 5  基于开口谐振环结构的全金属超表面。(a)太赫兹全金属超表面示意图[73];(b-d)太赫兹超表面的仿真结果,包括异常反射、聚焦、涡旋光束产生[74];(e)同时操纵电磁波和声波的全金属超表面[75];(f-h)针对电磁波和声波的多波束产生、漫反射以及波束偏转计算结果[75]

    Figure 5.  All-metal metasurfaces based on split-ring resonators. (a) Schematic diagram of the terahertz metasurface[73]; (b-d) Simulation results of the terahertz metasurface, including anomalous reflection, focusing, vortex beam generation[74]; (e) All-metal metasurface for simultaneous manipulation of electromagnetic waves and acoustic waves[75]; (f-h) Calculations results of multiple-beam generation, scattering diffusion, and beam steering for both electromagnetic waves and acoustic waves[75]

    图 6  基于全金属超表面的激光-红外和微波-红外隐身技术。(a)激光-红外兼容隐身材料的测试结果[36];(b)厚金属光栅的等效电路模型及微波-红外兼容隐身材料的高温RCS和红外辐射测试结果[46]

    Figure 6.  Laser-infrared and microwave-infrared stealth technology based on all-metal metasurface. (a) Measurement results of the laser-infrared compatible stealth materials[36]; (b) Equivalent circuit model of the thick metal grating and measured high-temperature RCS and infrared radiation of the microwave-infrared compatible stealth materials[46]

    图 7  基于全金属超表面建立的多频谱兼容隐身超材料。(a) 激光-红外-微波隐身兼容的分层超材料示意图及仿真结果[83]; (b)大面积跨尺度分层超材料示意图及实验测试结果[84]; (c)多波长激光-红外兼容的柔性金属超表面示意图及实验测试结果[85]

    Figure 7.  Multispectral compatible stealth metamaterials based on all-metal metasurfaces. (a) Schematic diagram and simulation results of the hierarchical metamaterial for laser-infrared-microwave compatible stealth[83]; (b) Schematic diagram of the large-area and multiscale hierarchical metamaterials and experimental test results 84]; (c) Schematic diagram and experiment results of the flexible metallic metasurface for multi-wavelength lasers and infrared compatible stealth[85]

  • [1]

    Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333−337. doi: 10.1126/science.1210713

    [2]

    Tang D L, Chen L, Liu J, et al. Achromatic metasurface doublet with a wide incident angle for light focusing[J]. Opt Express, 2020, 28(8): 12209−12218. doi: 10.1364/OE.392197

    [3]

    侯海生, 王光明, 李海鹏, 等. 超薄宽带平面聚焦超表面及其在高增益天线中的应用[J]. 物理学报, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701

    Hou H S, Wang G M, Li H P, et al. Ultra-thin broadband flat metasurface to focus electromagnetic waves and its application in high-gain antenna[J]. Acta Phys Sin, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701

    [4]

    Lei Y S, Zhang Q, Guo Y H, et al. Snapshot multi-dimensional computational imaging through a liquid crystal diffuser[J]. Photonics Res, 2023, 11(3): B111−B124. doi: 10.1364/PRJ.476317

    [5]

    Luo X G, Pu M B, Li X, et al. Broadband spin hall effect of light in single nanoapertures[J]. Light Sci Appl, 2017, 6(6): e16276. doi: 10.1038/lsa.2016.276

    [6]

    Burch J, Di Falco A. Surface topology specific metasurface holograms[J]. ACS Photonics, 2018, 5(5): 1762−1766. doi: 10.1021/acsphotonics.7b01449

    [7]

    Zhang C M, Dong F L, Intaravanne Y, et al. Multichannel metasurfaces for anticounterfeiting[J]. Phys Rev Appl, 2019, 12(3): 034028. doi: 10.1103/PhysRevApplied.12.034028

    [8]

    Zhang X H, Li X, Jin J J, et al. Polarization-independent broadband meta-holograms: via polarization-dependent nanoholes[J]. Nanoscale, 2018, 10(19): 9304−9310. doi: 10.1039/C7NR08428E

    [9]

    Chen D B, Yang J B, He X, et al. Tunable polarization-preserving vortex beam generator based on diagonal cross-shaped graphene structures at terahertz frequency[J]. Adv Opt Mater, 2023, 11(14): 2300182. doi: 10.1002/adom.202300182

    [10]

    Liang Y, Dong Y Y, Jin Y X, et al. Terahertz vortex beams generated by the ring-arranged multilayer transmissive metasurfaces[J]. Infrared Phys Technol, 2022, 127: 104441. doi: 10.1016/j.infrared.2022.104441

    [11]

    Akram M R, Bai X D, Jin R H, et al. Photon spin hall effect-based ultra-thin transmissive metasurface for efficient generation of OAM waves[J]. IEEE Trans Antennas Propag, 2019, 67(7): 4650−4658. doi: 10.1109/TAP.2019.2905777

    [12]

    Guo Y H, Huang Y J, Li X, et al. Polarization-controlled broadband accelerating beams generation by single catenary-shaped metasurface[J]. Adv Opt Mater, 2019, 7: 1900503. doi: 10.1002/adom.201900503

    [13]

    Monticone F, Estakhri N M, Alù A. Full control of nanoscale optical transmission with a composite metascreen[J]. Phys Rev Lett, 2013, 110(20): 203903. doi: 10.1103/PhysRevLett.110.203903

    [14]

    Qin F, Ding L, Zhang L, et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light[J]. Sci Adv, 2016, 2(1): e1501168. doi: 10.1126/sciadv.1501168

    [15]

    Akram M R, Mehmood M Q, Bai X D, et al. High efficiency ultrathin transmissive metasurfaces[J]. Adv Opt Mater, 2019, 7(11): 1801628. doi: 10.1002/adom.201801628

    [16]

    Jing X F, Gui X C, Zhou P W, et al. Physical explanation of Fabry–Pérot cavity for broadband bilayer metamaterials polarization converter[J]. J Light Technol, 2018, 36(12): 2322−2327. doi: 10.1109/JLT.2018.2808339

    [17]

    Pfeiffer C, Grbic A. Millimeter-wave transmitarrays for wavefront and polarization control[J]. IEEE Trans Microwave Theory Tech, 2013, 61(12): 4407−4417. doi: 10.1109/TMTT.2013.2287173

    [18]

    Bouchard F, De Leon I, Schulz S A, et al. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges[J]. Appl Phys Lett, 2014, 105(10): 101905. doi: 10.1063/1.4895620

    [19]

    Chen M L N, Jiang L J, Sha W E I. Orbital angular momentum generation and detection by geometric-phase based metasurfaces[J]. Appl Sci, 2018, 8(3): 362. doi: 10.3390/app8030362

    [20]

    Yao B S, Zang X F, Li Z, et al. Dual-layered metasurfaces for asymmetric focusing[J]. Photonics Res, 2020, 8(6): 830−843. doi: 10.1364/PRJ.387672

    [21]

    Xue C H, Lou Q, Chen Z N. Broadband double-layered Huygens’ Metasurface lens antenna for 5G millimeter-wave systems[J]. IEEE Trans Antennas Propag, 2020, 68(3): 1468−1476. doi: 10.1109/TAP.2019.2943440

    [22]

    Lin D M, Fan P Y, Hasman E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298−302. doi: 10.1126/science.1253213

    [23]

    Fang C Z, Yang Q Y, Yuan Q C, et al. High-Q resonances governed by the quasi-bound states in the continuum in all-dielectric metasurfaces[J]. Opto-Electron Adv, 2021, 4(6): 200030. doi: 10.29026/oea.2021.200030

    [24]

    Yue Z, Li J T, Li J, et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion[J]. Opto-Electron Sci, 2022, 1(3): 210014. doi: 10.29026/oes.2022.210014

    [25]

    Li J T, Wang G C, Yue Z, et al. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization[J]. Opto-Electron Adv, 2022, 5(1): 210062. doi: 10.29026/oea.2022.210062

    [26]

    Liu Z Q, Tan W Y, Fu G L, et al. Multipolar silicon-based resonant meta-surface for electro-optical modulation and sensing[J]. Opt Lett, 2023, 48(11): 2969−2972. doi: 10.1364/OL.489627

    [27]

    Zhu L, Dong L, Guo J, et al. Polarization conversion based on Mie-type electromagnetically induced transparency (EIT) effect in all-dielectric metasurface[J]. Plasmonics, 2018, 13(6): 1971−1976. doi: 10.1007/s11468-018-0712-8

    [28]

    Chen M, Cai J J, Sun W, et al. High-efficiency all-dielectric metasurfaces for broadband polarization conversion[J]. Plasmonics, 2018, 13(1): 21−29. doi: 10.1007/s11468-016-0479-8

    [29]

    Chen J, Wang D P, Si G Y, et al. Planar peristrophic multiplexing metasurfaces[J]. Opto-Electron Adv, 2023, 6: 220141. doi: 10.29026/oea.2023.220141

    [30]

    Zheng G X, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nat Nanotechnol, 2015, 10(4): 308−312. doi: 10.1038/nnano.2015.2

    [31]

    Jiang S, Chen C, Zhang H L, et al. Achromatic electromagnetic metasurface for generating a vortex wave with orbital angular momentum (OAM)[J]. Opt Express, 2018, 26(5): 6466−6477. doi: 10.1364/OE.26.006466

    [32]

    李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束[J]. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055

    Li X N, Zhou L, Zhao G Z. Terahertz vortex beam generation based on reflective metasurface[J]. Acta Phys Sin, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055

    [33]

    孙胜, 阳棂均, 沙威. 基于反射超表面的偏馈式涡旋波产生装置[J]. 物理学报, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681

    Sun S, Yang L J, Sha W. Offset-fed vortex wave generator based on reflective metasurface[J]. Acta Phys Sin, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681

    [34]

    Ye W M, Li X, Liu J, et al. Phenomenological modeling of nonlinear holograms based on metallic geometric metasurfaces[J]. Opt Express, 2016, 24(22): 25805−25815. doi: 10.1364/OE.24.025805

    [35]

    Gong Z J, Wu C, Fang C Q, et al. Broadband efficient vortex beam generation with metallic helix array[J]. Appl Phys Lett, 2018, 113(7): 071104. doi: 10.1063/1.5039804

    [36]

    Xie X, Li X, Pu M B, et al. Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion[J]. Adv Funct Mater, 2018, 28(14): 1706673. doi: 10.1002/adfm.201706673

    [37]

    Xie X, Liu K P, Pu M B, et al. All-metallic geometric metasurfaces for broadband and high-efficiency wavefront manipulation[J]. Nanophotonics, 2020, 9(10): 3209−3215. doi: 10.1515/nanoph-2019-0415

    [38]

    Liu Z Q, Liu G Q, Fu G L, et al. All-metal meta-surfaces for narrowband light absorption and high performance sensing[J]. J Phys D Appl Phys, 2016, 49(44): 445104. doi: 10.1088/0022-3727/49/44/445104

    [39]

    Hulkkonen H, Sah A, Niemi T. All-metal broadband optical absorbers based on block copolymer nanolithography[J]. ACS Appl Mater Interfaces, 2018, 10(49): 42941−42947. doi: 10.1021/acsami.8b17294

    [40]

    Mattiucci N, Trimm R, D'Aguanno G, et al. Tunable, narrow-band, all-metallic microwave absorber[J]. Appl Phys Lett, 2012, 101(14): 141115. doi: 10.1063/1.4757282

    [41]

    Li Z Y, Butun S, Aydin K. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces[J]. ACS Nano, 2014, 8(8): 8242−8248. doi: 10.1021/nn502617t

    [42]

    Liu Z Q, Liu G Q, Liu X S, et al. Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity[J]. Nanotechnology, 2015, 26(23): 235702. doi: 10.1088/0957-4484/26/23/235702

    [43]

    Zhang K, Deng R X, Song L X, et al. Broadband near-infrared absorber based on all metallic metasurface[J]. Materials, 2019, 12(21): 3568. doi: 10.3390/ma12213568

    [44]

    Liu Y M, Zhang X. Metasurfaces for manipulating surface plasmons[J]. Appl Phys Lett, 2013, 103(14): 141101. doi: 10.1063/1.4821444

    [45]

    刘梦蛟, 李添悦, 戈钦, 等. 多功能超构表面的相位调控机制及研究进展[J]. 光学学报, 2022, 42(21): 2126004. doi: 10.3788/AOS202242.2126004

    Liu M J, Li T Y, Ge Q, et al. Phase modulation mechanism and research progress of multifunctional metasurfaces[J]. Acta Opt Sin, 2022, 42(21): 2126004. doi: 10.3788/AOS202242.2126004

    [46]

    Xie X, Pu M B, Huang Y J, et al. Heat resisting metallic meta-skin for simultaneous microwave broadband scattering and infrared invisibility based on catenary optical field[J]. Adv Mater Technol, 2019, 4(2): 1800612. doi: 10.1002/admt.201800612

    [47]

    Cai J X, Zhang F, Pu M B, et al. Broadband and high-efficiency photonic spin-Hall effect with all-metallic metasurfaces[J]. Opt Express, 2022, 30(9): 14938−14947. doi: 10.1364/OE.455381

    [48]

    Xie X, Pu M B, Liu K P, et al. High-efficiency and tunable circular-polarization beam splitting with a liquid-filled all-metallic catenary meta-mirror[J]. Adv Mater Technol, 2019, 4(7): 1900334. doi: 10.1002/admt.201900334

    [49]

    Chen L, Shao Z L, Liu J, et al. Reflective quasi-continuous metasurface with continuous phase control for light focusing[J]. Materials, 2021, 14(9): 2147. doi: 10.3390/ma14092147

    [50]

    Cai J X, Zhang F, Pu M B, et al. All-metallic high-efficiency generalized pancharatnam–berry phase metasurface with chiral meta-atoms[J]. Nanophotonics, 2022, 11(9): 1961−1968. doi: 10.1515/nanoph-2021-0811

    [51]

    Luo J, Wang Y H, Pu M B, et al. Multiple rotational doppler effect induced by a single spinning meta-atom[J]. Phys Rev Appl, 2023, 19(4): 044064. doi: 10.1103/PhysRevApplied.19.044064

    [52]

    Luo X G. Catenary Optics[M]. Singapore: Springer, 2019.https://doi.org/10.1007/978-981-13-4818-1.

    [53]

    Pu M B, Ma X L, Guo Y H, et al. Theory of microscopic meta-surface waves based on catenary optical fields and dispersion[J]. Opt Express, 2018, 26(15): 19555−19562. doi: 10.1364/OE.26.019555

    [54]

    李雄, 马晓亮, 罗先刚. 超表面相位调控原理及应用[J]. 光电工程, 2017, 44(3): 255−275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electron Eng, 2017, 44(3): 255−275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    [55]

    Xie X, Pu M B, Jin J J, et al. Generalized pancharatnam-berry phase in rotationally symmetric meta-atoms[J]. Phys Rev Lett, 2021, 126(18): 183902. doi: 10.1103/PhysRevLett.126.183902

    [56]

    Guo Y H, Pu M B, Zhang F, et al. Classical and generalized geometric phase in electromagnetic metasurfaces[J]. Photonics Insights, 2022, 1(1): R03. doi: 10.3788/PI.2022.R03

    [57]

    Pu M B, Li X, Ma X L, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Sci Adv, 2015, 1(9): e1500396. doi: 10.1126/sciadv.1500396

    [58]

    Zhang M, Pu M B, Zhang F, et al. Plasmonic metasurfaces for switchable photonic spin– orbit interactions based on phase change materials[J]. Adv Sci, 2018, 5(10): 1800835. doi: 10.1002/advs.201800835

    [59]

    Guo Y H, Ma X L, Pu M B, et al. High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens[J]. Adv Opt Mater, 2018, 6(19): 1800592. doi: 10.1002/adom.201800592

    [60]

    Guo Y H, Zhang Z J, Pu M B, et al. Spoof plasmonic metasurfaces with catenary dispersion for two-dimensional wide-angle focusing and imaging[J]. iScience, 2019, 21: 145−156. doi: 10.1016/j.isci.2019.10.019

    [61]

    Zhao L, Liu H, He Z H, et al. All-metal frequency-selective absorber/emitter for laser stealth and infrared stealth[J]. Appl Opt, 2018, 57(8): 1757−1764. doi: 10.1364/AO.57.001757

    [62]

    Song M W, Li X, Pu M B, et al. Color display and encryption with a plasmonic polarizing metamirror[J]. Nanophotonics, 2018, 7(1): 323−331. doi: 10.1515/nanoph-2017-0062

    [63]

    Zhou X T, Jin R C, Wang J, et al. All-metal metasurface polarization converter in visible region with an in-band function[J]. Appl Phys Express, 2019, 12(9): 092010. doi: 10.7567/1882-0786/ab3c0c

    [64]

    Yan J C, Li Z K, Zhang Y, et al. Trapped-mode resonances in all-metallic metasurfaces comprising rectangular-hole dimers with broken symmetry[J]. J Appl Phys, 2019, 126(21): 213102. doi: 10.1063/1.5128520

    [65]

    Wu P H, Wang Y Y, Yi Z, et al. A near-infrared multi-band perfect absorber based on 1D gold grating fabry-perot structure[J]. IEEE Access, 2020, 8: 72742−72748. doi: 10.1109/ACCESS.2020.2983394

    [66]

    Majumder B, Sankar V S, Meena H. Design of an artificially engineered all metallic lens antenna[C]//2020 IEEE Asia-Pacific Microwave Conference (APMC), Hong Kong, China, 2020: 1072–1074. https://doi.org/10.1109/APMC47863.2020.9331698.

    [67]

    Li L X, Zong X Y, Liu Y F. All-metallic metasurfaces towards high-performance magneto-plasmonic sensing devices[J]. Photonics Res, 2020, 8(11): 1742−1748. doi: 10.1364/PRJ.399926

    [68]

    Shi Y Y, Yang R, Dai C J, et al. Broadband diffraction-free on-chip propagation along hybrid metallic grating metasurfaces in the visible frequency[J]. J Phys D Appl Phys, 2021, 54(4): 044001. doi: 10.1088/1361-6463/abbfc6

    [69]

    Xiong X, Wang X, Wang Z H, et al. Constructing an achromatic polarization-dependent bifocal metalens with height-gradient metastructures[J]. Opt Lett, 2021, 46(6): 1193−1196. doi: 10.1364/OL.414668

    [70]

    Du W J, Lou Z L, Chen X S, et al. Multifunctional metasurfaces integrating near-field display and 3D holography[J]. J Phys D Appl Phys, 2022, 55(10): 105102. doi: 10.1088/1361-6463/ac3b11

    [71]

    Zhang F, Pu M B, Gao P, et al. Simultaneous full-color printing and holography enabled by centimeter-scale plasmonic metasurfaces[J]. Adv Sci, 2020, 7(10): 1903156. doi: 10.1002/advs.201903156

    [72]

    Cheng Y Z, Yang D R, Li X C. Broadband reflective dual-functional polarization convertor based on all-metal metasurface in visible region[J]. Phys B Condens Matter, 2022, 640: 414047. doi: 10.1016/J.PHYSB.2022.414047

    [73]

    Wang M C, Cheng Y Z, Wu L. Ultra-broadband high-efficiency circular polarization conversion and terahertz wavefront manipulation based on an all-metallic reflective metasurface[J]. Appl Opt, 2022, 61(16): 4833−4842. doi: 10.1364/AO.454099

    [74]

    Zhu J F, Liao S W, Xue Q. 3-D printed millimeter-wave metal-only dual-band circularly polarized reflectarray[J]. IEEE Trans Antennas Propag, 2022, 70(10): 9357−9364. doi: 10.1109/TAP.2022.3184483

    [75]

    Bai G D, Ma Q, Cao W K, et al. Manipulation of electromagnetic and acoustic wave behaviors via shared digital coding metallic metasurfaces[J]. Adv Intell Syst, 2019, 1(5): 1900038. doi: 10.1002/aisy.201900038

    [76]

    褚宏晨, 赖耘. 基于超表面的超薄隐身器件[J]. 红外与激光工程, 2020, 49(9): 20201038. doi: 10.3788/IRLA20201038

    Chu H C, Lai Y. Ultrathin invisibility cloaks based on metasurfaces[J]. Infrared Laser Eng, 2020, 49(9): 20201038. doi: 10.3788/IRLA20201038

    [77]

    Ji C, Peng J Q, Yuan L M, et al. All-ceramic coding metastructure for high-temperature RCS reduction[J]. Adv Eng Mater, 2022, 24(8): 2101503. doi: 10.1002/adem.202101503

    [78]

    Li Z G, Wang W, Rosenmann D, et al. All-metal structural color printing based on aluminum plasmonic metasurfaces[J]. Opt Express, 2016, 24(18): 20472−20480. doi: 10.1364/OE.24.020472

    [79]

    徐翠莲, 孟跃宇, 王甲富, 等. 光学透明红外与雷达兼容隐身复合超表面[J]. 光子学报, 2021, 50(4): 0416001. doi: 10.3788/gzxb20215004.0416001

    Xu C L, Meng Y Y, Wang J F, et al. Optically transparent hybrid metasurfaces for low infrared emission and wideband microwave absorption[J]. Acta Photonica Sin, 2021, 50(4): 0416001. doi: 10.3788/gzxb20215004.0416001

    [80]

    Yang K, Shi S Q, Li C X, et al. Broadband stealth devices based on encoded metamaterials[J]. Appl Opt, 2022, 61(34): 10171−10177. doi: 10.1364/AO.471262

    [81]

    Huang S N, Fan Q, Xu C L, et al. A visible-light-transparent camouflage-compatible flexible metasurface for infrared-radar stealth applications[J]. J Phys D Appl Phys, 2021, 54(1): 015001. doi: 10.1088/1361-6463/abb728

    [82]

    Buhara E, Ghobadi A, Ozbay E. Adaptive visible and short-wave infrared camouflage using a dynamically tunable metasurface[J]. Opt Lett, 2021, 46(19): 4777−4780. doi: 10.1364/OL.439435

    [83]

    Feng X D, Xie X, Pu M B, et al. Hierarchical metamaterials for laser-infrared-microwave compatible camouflage[J]. Opt Express, 2020, 28(7): 9445−9453. doi: 10.1364/OE.388335

    [84]

    Feng X D, Pu M B, Zhang F, et al. Large-area low-cost multiscale-hierarchical metasurfaces for multispectral compatible camouflage of dual-band lasers, infrared and microwave[J]. Adv Funct Mater, 2022, 32(36): 2205547. doi: 10.1002/adfm.202205547

    [85]

    Huang J K, Wang Y T, Yuan L M, et al. Large-area and flexible plasmonic metasurface for laser–infrared compatible camouflage[J]. Laser Photonics Rev, 2023, 17(3): 2200616. doi: 10.1002/LPOR.202200616

  • 加载中

(8)

计量
  • 文章访问数:  6097
  • PDF下载数:  987
  • 施引文献:  0
出版历程
收稿日期:  2023-05-20
修回日期:  2023-08-28
录用日期:  2023-08-28
刊出日期:  2023-11-03

目录

/

返回文章
返回