无线光通信系统捕获、瞄准和跟踪研究进展

梁静远,陈瑞东,姚海峰,等. 无线光通信系统捕获、瞄准和跟踪研究进展[J]. 光电工程,2022,49(8): 210439. doi: 10.12086/oee.2022.210439
引用本文: 梁静远,陈瑞东,姚海峰,等. 无线光通信系统捕获、瞄准和跟踪研究进展[J]. 光电工程,2022,49(8): 210439. doi: 10.12086/oee.2022.210439
Liang J Y, Chen R D, Yao H F, et al. Research progress of acquisition, pointing and tracking in optical wireless communication system[J]. Opto-Electron Eng, 2022, 49(8): 210439. doi: 10.12086/oee.2022.210439
Citation: Liang J Y, Chen R D, Yao H F, et al. Research progress of acquisition, pointing and tracking in optical wireless communication system[J]. Opto-Electron Eng, 2022, 49(8): 210439. doi: 10.12086/oee.2022.210439

无线光通信系统捕获、瞄准和跟踪研究进展

  • 基金项目:
    西安市科技创新引导项目(201805030YD8CG14(12));陕西省重点产业创新项目(2017ZDCXL-GY-06-01)
详细信息
    作者简介:
    *通讯作者: 梁静远,ljy@xaut.edu.cn 赵黎,pilly_lily@126.com 王怡,wcy16@cjlu.edu.cn
  • 中图分类号: TN929.1

Research progress of acquisition, pointing and tracking in optical wireless communication system

  • Fund Project: The Xi’an Science and Technology Planning Project (201805030YD8CG14 (12)), and The Key Industrial Innovation Chain Project of Shaanxi Province (2017ZDCXL-GY-06-01)
More Information
  • 无线光通信是指以光波作为载体在自由空间中传递信息的技术,具有带宽高、成本低和安全性高等优点。捕获、瞄准和跟踪(acquisition, pointing and tracking, APT)系统是建立无线光通信系统的前提,简单、可靠、动态性能好的APT系统可以克服由机械平台震动及外界环境变化对无线光通信系统的影响。因此,需要对APT系统进行较为深入的理论和实验研究,从而设计出一种适合无线光通信的捕获、瞄准和跟踪方法。本文分析了国内外在捕获、瞄准、跟踪方面的研究成果,同时介绍了西安理工大学在自动瞄准方面所做的工作,主要包括初始捕获系统、非共视轴控制系统、光束检测系统等方面的进展,以及1.3 km、5.2 km、10.2 km、100 km距离链路的外场实验,验证了APT系统的有效性。最后展望了无线光通信中APT的发展。

  • Overview: Wireless optical communication refers to the technology of transmitting information in free space using light beams as carriers, which has the advantages of high bandwidth, low cost, and high security. Due to factors such as narrow signal beam and long transmission distance, it is difficult to establish and maintain a wireless optical communication link. Therefore, an acquisition, targeting, and tracking system needs to be established to prevent the communication link from being interrupted. In the wireless optical communication system, the optical components on the two platforms carrying the transmitter and the receiver are required to be coaxial in real time, and this process is usually called automatic aiming. In order to maintain the real-time aiming of the transceiver boresight of both transceivers, it is necessary to design a fast and high-precision APT system. A typical wireless optical communication APT system is shown in Figure 1. Liu Changcheng established and analyzed the simulation model in the APT system in atmospheric laser communication, and designed an automatic beam capture system; Hu Qidi designed a beacon light spot detection scheme using CCD; Yang Peisong proposed a coaxial aiming detection method, and designed the aiming control system and tracking system according to the method, and carried out field experiments; Zhao Qi designed an initial capture system and conducted a 1.3 km field experiment; Xu Wei designed a light spot detection system and proposed a corresponding image processing algorithm; Li Shiyan proposed an optical axis aiming scheme, which can effectively improve the detection accuracy and aiming accuracy of the system; Yan Xi designed a spot tracking system and conducted a 5.2 km field tracking experiment. The experimental results show that the tracking accuracy of the system can reach 5.4 μrad; Jing Yongkang designed a light spot image detection method, and conducted a 100 km laser communication experiment on this basis; Zhang Pu embedded a high-precision actuator in the APT system to achieve high-precision aiming and tracking, designed a focusing system and conducted field experiments of 10.2 km and 100 km. Liang Hanli designed an APT system that can be mounted on UAVs and conducted an airborne laser communication experiment through a simulated airborne experimental platform, and its tracking accuracy can reach 2.42 μrad; Ke Xizheng, Yang Shangjun and others proposed a fast aiming method. The method does not need to feed back the control signal from the receiving end to the transmitting end, and can complete the establishment of the uplink and the downlink at the same time. And carried out 1.3 km and 10.3 km field experiments to verify the method. This paper systematically analyzes the development and application of the APT system in wireless optical communication and introduces the research progress and achievements of Xi'an University of Technology in this field. Including the experimental analysis and verification of the performance of the designed initial capture system, compound axis control system and beam detection system Improvements have increased the effectiveness and reliability of the APT system.

  • 加载中
  • 图 1  无线光通信APT系统结构示意图[5]

    Figure 1.  Optical wireless communication APT system diagram[5]

    图 2  典型无线激光通信APT系统图[1]

    Figure 2.  Typical wireless laser communication APT system diagram[1]

    图 3  实验方位点示意图[33]

    Figure 3.  Schematic diagram of experimental azimuth[33]

    图 4  粗精分级控制系统[42-43]

    Figure 4.  Composite axis pointing system[42-43]

    图 5  抑制误差前后角度增量 [43]。(a) 抑制误差前;(b) 抑制误差后

    Figure 5.  Suppress the error before and after the angle increment[43]. (a) Angle increment before error suppression; (b) Angle increment after error supperssion

    图 6  二维云台响应曲线[43]

    Figure 6.  Alignment response curve[43]

    图 7  输入电压与角度关系曲线[43]。(a) θx方向控制电压与角度;(b) θz方向控制电压与角度

    Figure 7.  The relationship between input voltage and angle[43]. (a) Control voltage and angle in θx direction; (b) Control voltage and angle in θz direction

    图 8  光束检测系统结构示意图[5]

    Figure 8.  Structure of beam detection system[5]

    图 9  光束检测的四种情况[5]。(a) α=0, p=0; (b) α≠0, p=0; (c) α=0, p≠0; (d) α≠0, p≠0

    Figure 9.  Four kinds of situations of light beam detection[5]. (a) α=0, p=0; (b) α≠0, p=0; (c) α=0, p≠0; (d) α≠0, p≠0

    图 10  收发一体无人机中继APT系统[45]

    Figure 10.  Transceiver integrated UAV relay APT system[45]

    图 11  接收端示波器信号波形[45]

    Figure 11.  The signal waveform of the oscilloscope at the receiving[45]

    图 12  光斑中心坐标位置分布[45]

    Figure 12.  Coordinate position distribution of spot center[45]

    图 13  1.3 km远场实验系统装配结构图[5]

    Figure 13.  1.3 km far-field experimental system assembly structure diagram [5]

    图 14  光斑位置坐标 (2016-05-25 22:46~2016-05-26 22:00, 小雨, 13 ℃~18 ℃)[5]。(a) 方位方向;(b) 俯仰方向

    Figure 14.  Spot position coordinates (2016-05-25 22:46~2016-05-26 22:00, rainy, 13 ℃~18 ℃)[5]. (a) Azimuth direction; (b) Pitching direction

    图 15  光斑跟踪系统原理图[47]

    Figure 15.  Schematic diagram of beam tracking system[47]

    图 16  光斑跟踪曲线(2017-12-05 18:00~2017-12-06 6:00,多云,−1 ℃~9 ℃)[47](a) 方位方向;(b) 俯仰方向

    Figure 16.  Tracking curve of beam (2017-12-05 18:00~2017-12-06 6:00, cloudy, −1 ℃~9 ℃)[47](a) Azimuth direction; (b) Pitching direction

    图 17  光斑位置误差统计(2017-12-05 18:00~2017-12-06 6:00,多云,−1°~9°)[47] (a) 方位方向;(b)俯仰方向

    Figure 17.  Statistical results of maintaining the beam position (2017-12-05 18:00~2017-12-06 6:00, cloudy, −1°~9°)[47] (a) Azimuth direction; (b) Pitching direction

    图 18  10.2 km无信标光APT系统装配图[43]

    Figure 18.  Assembly drawing of beacon free optical APT system of 10.2 km experiment[43]

    图 19  光斑中心坐标曲线(2018-09-30 21:00~2018-10-01 00:00,晴,17 ℃)[48]。(a) 水平方向;(b) 俯仰方向

    Figure 19.  Spot center coordinates curve (2018-09-30 21:00~2018-10-01 0:00, sunny, 17 ℃)[48]. (a) Azimuth direction; (b) Pitching direction

    图 20  光斑中心坐标曲线(2018-10-01 21:00~2018-10-02 0:00,阴,12 ℃)[48]。(a)水平方向;(b)俯仰方向

    Figure 20.  Spot center coordinates curve (2018.10.1 21:00~2018.10.2. 0:00, cloudy, 12 ℃)[48]. (a) Azimuth direction; (b) Pitching direction

    图 21  光斑中心坐标曲线(2018-10-02 21:00~2018-10-02 0:00,多云,14 ℃)[48]。(a) 水平方向;(b) 俯仰方向

    Figure 21.  Spot center coordinates curve (2018-10-02 21:00~2018-10-02 0:00, cloudy, 14 ℃)[48]. (a) Azimuth direction; (b) Pitching direction

    图 22  光斑中心拟合曲线[48]。(a) 光斑中心位置变化曲线;(b) 温、湿度变化曲线

    Figure 22.  Spot center fitting curve[48].(a) Change curve of spot center position; (b) Temperature and humidity curve

    图 23  100 km外场实验场景[48]。(a) 接收端;(b) 发射端

    Figure 23.  100 km field experiment scene[48]. (a) Receiving terminal; (b) Transmitting terminal

    图 24  光斑中心坐标变化曲线(第一次实验)[48]。(a) 水平方向检测光斑中心坐标;(b) 俯仰方向检测光斑中心坐标(2019-08-18 23:00~2019-08-19 02:00,晴,14 ℃)

    Figure 24.  Spot center coordinate change curve (The first experiment) [48]. (a) Spot center coordinates in horizontal direction; (b) Spot center coordinates in pitch direction (2019-08-18 23:00~2019-08-19 02:00, sunny, 14 ℃)

    图 25  光斑中心坐标变化曲线(第二次实验) [48]。(a) 水平方向检测光斑中心坐标; (b) 俯仰方向检测光斑中心坐标(2019-08-20 23:00~2019-08-20 02:00,阴转小雨,9 ℃)

    Figure 25.  Spot center coordinate change curve (The second experiment) [48]. (a) Spot center coordinates in horizontal; (b) Spot center coordinates in pitch direction (2019-08-20 23:00~2019-08-20 02: 00, cloudy and rainy, 9 ℃)

    图 26  利用二维反射镜实现快速瞄准的IM/DD无线光通信系统[40]

    Figure 26.  Wireless optical communication IM/DD system with fast alignment of two-dimensional mirror[40]

    图 27  10.3 km无线光通信实验链路图[40]

    Figure 27.  Experiment of wireless optical communication for 10.3 km[40]

    图 28  光束跟踪曲线(2021-07-24 23:00~2021-07-25 6:00)[40]。(a) 俯仰方向;(b) 水平方向

    Figure 28.  Beam tracing curve (2021-07-24 23:00~2021-07-25 6:00)[40]. (a) Pitching direction; (b) Azimuth direction

    图 29  功率谱密度估计[40]。 (a) X方向;(b) Y方向

    Figure 29.  Power spectrum density estimate[40]. (a) X position; (b) Y position

    图 30  光斑跟踪曲线及PSD[40]。(a) 光斑跟踪曲线;(b) 方向跟踪曲线;(c) X方向功率谱密度估计;(d) Y方向功率谱密度估计

    Figure 30.  Spot tracking curve and PSD[40]. (a) Curve of the beam tracking; (b) Curve of the beam tracking in X and Y directions; (c) X PSD; (d) Y PSD

    图 31  收发两端信号波形[40]。(a) 发射信号;(b) 接收信号

    Figure 31.  Receive and transmit signal waveforms[40]. (a) Transmitting signal; (b) Receiving signal

    表 1  国外研究进展

    Table 1.  Research progress abroad

    文献年份人物/组织研究进展优点/参数
    [6]1985NASDA激光通信设备LUCE系统跟瞄精度均优于1 mrad
    [7]1994JPL激光通信演示终端OCD通信速率250 Mb/s
    [8]1994MPT激光通信设备LCE粗、精跟踪精度优于32 μrad、2 μrad
    [9]1999A.Biswas激光通信终端LCT系统CCD工作帧频1.6 kHz
    [10]2001ESA复合轴瞄准系统应用于SILEX系统跟踪精度可达2 μrad
    [11]2001M.Guelman利用复合轴APT系统进行激光通信实验首次采用复合轴APT系统
    [12]2004MIT NASA火星激光通信演示OLCD系统通信速率可达10 Mb/s
    [13]2008DLR激光通信终端LCT平均跟踪误差226 μrad
    [14]2012S.Christopher能够实现宽视场捕获和瞄准的小型激光终端捕获视场46°
    [15]2013DLR“狂风”战斗机实现地对空激光通信实验链路距离79 km、数据传输速率1.25 Gb/s
    [17]2016C.Quintana应用于机载激光通信的粗精跟踪系统空对地通信速率可达2 Mb/s
    [18]2020A.Riccardo应用于卫星通信的小型化高精度瞄准终端瞄准误差小于10 μrad
    下载: 导出CSV

    表 2  国内研究进展

    Table 2.  Domestic research progress

    文献年份人物/组织研究进展特点/参数
    [4]1999刘泽金、舒柏宏高能激光束自动瞄准系统稳定有效带宽为50 Hz
    [30]2005柯熙政、刘长城光束自动捕获系统建立ATP系统仿真模型
    [19]2005艾勇、周亚霖空间光APT系统角度测量相对误差约为1.3%
    [20]2007姜会林、佟首峰复合轴粗跟踪伺服带宽优化设计粗、精跟踪精度分别为60 μrad和4 μrad
    [21]2008潘高峰、张景旭共光路自动瞄准系统瞄准精度可达20.52 μrad
    [31]2011柯熙政、胡启迪信标光光斑检测系统利用PSD和CCD两种探测器设计APT子系统
    [22]2011宋延嵩、常帅空空机载激光通信实验通信速率1.5 Gb/s
    [23]2013钱锋、贾建军新型光斑探测相机噪声对定位误差的影响降低至0.007 pixel
    [24]2015孟立新、赵丁选粗、精复合跟踪系统粗、精跟踪精度分别优于23.97 μrad和 7.0 μrad
    [32]2016柯熙政、杨沛松同轴瞄准检测方法角度跟踪精度为34.6 μrad
    [33]2016柯熙政、赵奇初始捕获系统采用位置校准点方法,减少系统设计成本
    [25]2017张元生、仇振安应用于机载激光通信的APT系统跟踪精度可达10 μrad
    [36]2019柯熙政、严希光斑跟踪系统跟踪精度可达5.4 μrad
    [26]2019蔡美华、孔德聪单探测型复合轴粗精瞄准系统跟踪精度可达9.69 μrad
    [35]2020柯熙政、景永康光斑图像检测算法100 km实验中实现无信标光瞄准
    [38]2020柯熙政、张璞捕获、瞄准及调焦系统10.2 km实验跟瞄精度为27.12 μrad
    [27]2020任斌、鲁倩四象限探测器跟踪系统跟踪精度优于3 μrad
    [39]2021柯熙政、杨尚君二位反射镜快速对准系统发射端采用相机标定,无需回传控制信息即可完成瞄准
    [39]2021柯熙政、梁韩立机载激光自动跟踪控制系统跟踪精度可达2.42 μrad
    [28]2021李千、吴志勇BP神经网络位置检测/多单元阵列探测位置检测光斑位置检测系统角分辨率0.187 μrad/0.903 μrad
    下载: 导出CSV

    表 3  捕获不确定区域求解实验数据记录表[33]

    Table 3.  Capture uncertain region to solve the experimental data record table[33]

    位置精度/(°)纬度/(°)海拔高度/m方位角(计算)俯仰角(计算)方位角(真实)俯仰角(真实)
    A108.98904734.254260424
    B108.98699334.254459421
    C108.98801834.25320742241.3710930.01474941.1007640.010549
    D108.98742534.25313642130.354963−0.03186030.194587−0.30598
    E108.98403034.25202442519.403518−0.03611419.005784−0.500756
    F108.98430534.25233542517.402036−0.03970317.315786−0.690475
    G108.98409534.25238742515.973571−0.02983016.147860−0.712659
    H108.98396234.25230242413.204046−0.01855913.185405−0.685246
    I108.98402234.2529504259.599473−0.0098929.305784−0.684959
    J108.98400834.2532074246.6550630.0014876.512407−0.685026
    K108.98399234.2534424223.9116380.0146223.850078−0.685104
    L108.98318134.254314417−5.1855540.056791−4.990479−0.571054
    下载: 导出CSV
  • [1]

    柯熙政, 邓莉君. 无线光通信[M]. 北京: 科学出版社, 2016.

    Ke X Z, Deng L J. Optical Wireless Communication[M]. Beijing: Science Press, 2016.

    [2]

    闫鲁生, 王峰, 吴畏, 等. 无人机激光通信载荷发展现状与关键技术[J]. 激光与光电子学进展, 2016, 53(8): 080005. doi: 10.3788/LOP53.080005

    Yan L S, Wang F, Wu W, et al. Current status and key technologies of unmanned aerial vehicle laser communication payloads[J]. Laser Optoelectron Prog, 2016, 53(8): 080005. doi: 10.3788/LOP53.080005

    [3]

    毛一聪, 王惠琴, 张悦, 等. 光空间调制技术的研究进展[J]. 光电工程, 2020, 47(3): 190712. doi: 10.12086/oee.2020.190712

    Mao Y C, Wang H Q, Zhang Y, et al. Research status and development of optical spatial modulation technology[J]. Opto-Electron Eng, 2020, 47(3): 190712. doi: 10.12086/oee.2020.190712

    [4]

    刘泽金, 舒柏宏, 王永仲, 等. 高能激光束自动对准和稳定系统的结构设计[J]. 光学技术, 1999(1): 19−20. doi: 10.3321/j.issn:1002-1582.1999.01.019

    Liu Z J, Shu B H, Wang Y Z, et al. Design for automatically aligning and stabilizing high energy laser beam[J]. Opt Technol, 1999(1): 19−20. doi: 10.3321/j.issn:1002-1582.1999.01.019

    [5]

    杨沛松. 无线激光通信APT系统设计与实验研究[D]. 西安: 西安理工大学, 2016.

    Yang P S. Research and design of acquisition pointing tracking system for free-space optical communication[D]. Xi'an: Xi'an University of Technology, 2016.

    [6]

    Nakagawa K, Yamamoto A, Toyoda M. Performance test result of LUCE (laser utilizing communications equipment) engineering model[J]. Proc SPIE, 2000, 3932: 68−76. doi: 10.1117/12.384314

    [7]

    Chen C C, Lesh J R. Overview of the optical communications demonstrator[J]. Proc SPIE, 1994, 2123: 85−94. doi: 10.1117/12.184687

    [8]

    Arimoto Y, Toyoshima M, Toyoda M, et al. Preliminary result on laser communication experiment using (ETS-VI)[J]. Proc SPIE, 1995, 2381: 151−158. doi: 10.1117/12.207423

    [9]

    Biswas A, Williams G, Wilson K E, et al. Results of the STRV-2 lasercom terminal evaluation tests[J]. Proc SPIE, 1998, 3266: 2−13. doi: 10.1117/12.308694

    [10]

    Tolker-Nielsen T, Oppenhauser G. In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX[J]. Proc SPIE, 2002, 4635: 1−15. doi: 10.1117/12.464105

    [11]

    Guelman M, Kogan A, Kazarian A, et al. Acquisition and pointing control for inter-satellite laser communications[J]. IEEE Trans Aerosp Electron Syst, 2004, 40(4): 1239−1248. doi: 10.1109/TAES.2004.1386877

    [12]

    Boroson D M, Biswas A, Edwards B L. MLCD: overview of NASA's Mars laser communications demonstration system[J]. Proc SPIE, 2004, 5338: 16−28. doi: 10.1117/12.543014

    [13]

    Walther F G, Michael S, Parenti R R, et al. Air-to-ground lasercom system demonstration design overview and results summary[J]. Proc SPIE, 2010, 7814: 78140Y. doi: 10.1117/12.864262

    [14]

    Schmidt C, Horwath J. Wide-field-of-regard pointing, acquisition and tracking-system for small laser communication terminals[C]//Proceedings of ICSOS 2012, Ajaccio, 2012.

    [15]

    Moll F, Mitzkus W, Horwath J, et al. Demonstration of high-rate laser communications from fast airborne platform: flight campaign and results[J]. Proc SPIE, 2014, 9248: 92480R. doi: 10.1117/12.2067248

    [16]

    Moll F, Horwath J, Shrestha A, et al. Demonstration of high-rate laser communications from a fast airborne platform[J]. IEEE J Sel Areas Commun, 2015, 33(9): 1985−1995. doi: 10.1109/JSAC.2015.2433054

    [17]

    Quintana C, Erry G, Gomez A, et al. Design of a holographic tracking module for long-range retroreflector free-space systems[J]. Appl Opt, 2016, 55(25): 7173−7178. doi: 10.1364/AO.55.007173

    [18]

    Antonello R, Branz F, Sansone F, et al. High-precision dual-stage pointing mechanism for miniature satellite laser communication terminals[J]. IEEE Trans Ind Electron, 2021, 68(1): 776−785. doi: 10.1109/TIE.2020.2972452

    [19]

    周亚霖, 艾勇, 左韬, 等. 空间光束实时捕获、跟踪实验与分析[J]. 光子学报, 2005, 34(6): 943−947.

    Zhou Y L, Ai Y, Zuo T, et al. Experimentation of real-time acquisition and tracking of dree apace laser beam and analysis of the result[J]. Acta Photon Sin, 2005, 34(6): 943−947.

    [20]

    佟首峰, 姜会林, 刘云清, 等. 自由空间激光通信系统APT粗跟踪伺服带宽优化设计[J]. 光电工程, 2007, 34(9): 16−20. doi: 10.3969/j.issn.1003-501X.2007.09.004

    Tong S F, Jiang H L, Liu Y Q, et al. Optimum design of bandwidth for the APT coarse tracking assembly in free space laser communication[J]. Opto-Electron Eng, 2007, 34(9): 16−20. doi: 10.3969/j.issn.1003-501X.2007.09.004

    [21]

    潘高峰, 张景旭, 陈娟. 一种共光路自动对准系统[J]. 中国激光, 2008, 35(10): 1500−1504. doi: 10.3321/j.issn:0258-7025.2008.10.013

    Pan G F, Zhang J X, Chen J. Common path auto-alignment system[J]. Chin J Lasers, 2008, 35(10): 1500−1504. doi: 10.3321/j.issn:0258-7025.2008.10.013

    [22]

    宋延嵩, 常帅, 佟首峰, 等. 航空激光通信系统的特性分析及机载激光通信实验[J]. 中国激光, 2016, 43(12): 1206004. doi: 10.3788/CJL201643.1206004

    Song Y S, Chang S, Tong S F, et al. Feature analysis of aeronautical laser communication system and airborne laser communication experiment[J]. Chin J Lasers, 2016, 43(12): 1206004. doi: 10.3788/CJL201643.1206004

    [23]

    钱锋, 贾建军, 张亮, 等. 捕获、跟踪、瞄准系统中光斑探测相机的定位精度[J]. 中国激光, 2013, 40(2): 0205007. doi: 10.3788/CJL201340.0205007

    Qian F, Jia J J, Zhang L, et al. Positioning accuracy of spot-detecting camera in acquisition, tracking, pointing system[J]. Chin J Lasers, 2013, 40(2): 0205007. doi: 10.3788/CJL201340.0205007

    [24]

    孟立新, 赵丁选, 张立中, 等. 机载激光通信稳瞄吊舱设计与跟踪精度测试[J]. 兵工学报, 2015, 36(10): 1916−1923. doi: 10.3969/j.issn.1000-1093.2015.10.013

    Meng L X, Zhao D X, Zhang L Z, et al. The test of tracking accuracy and design of airborne laser communication stabilized pod[J]. Acta Armamentarii, 2015, 36(10): 1916−1923. doi: 10.3969/j.issn.1000-1093.2015.10.013

    [25]

    张元生, 仇振安, 郭帅, 等. 机载激光通信系统关键技术分析与试验验证[J]. 电光与控制, 2017, 24(10): 80−84. doi: 10.3969/j.issn.1671-637X.2017.10.012

    Zhang Y S, Qiu Z A, Guo S, et al. Key technology analysis of airborne laser communication system and its verification[J]. Electron Opt Control, 2017, 24(10): 80−84. doi: 10.3969/j.issn.1671-637X.2017.10.012

    [26]

    蔡美华, 孔德聪, 佟鑫刚. 单探测型复合轴系统粗精指向对准的研究与实现[J]. 光电技术应用, 2019, 34(1): 63−66. doi: 10.3969/j.issn.1673-1255.2019.01.014

    Cai M H, Kong D C, Tong X G. Research and implementation of coarse fine pointing alignment for single composite shaft detection system[J]. Electro-Opt Technol Appl, 2019, 34(1): 63−66. doi: 10.3969/j.issn.1673-1255.2019.01.014

    [27]

    鲁倩, 任斌, 边晶莹. 四象限探测器的信号光捕获与跟踪技术研究[J]. 光电工程, 2020, 47(3): 190559. doi: 10.12086/oee.2020.190559

    Lu Q, Ren B, Bian J Y. Research on acquisition and tracking technology for the four-quadrant detector[J]. Opto-Electron Eng, 2020, 47(3): 190559. doi: 10.12086/oee.2020.190559

    [28]

    李千. 基于阵列探测器的空间激光通信光斑位置检测技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2020.

    Li Q. Research on spot position detection technology of space laser communication based on array detector[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2020.

    [29]

    柯熙政, 卢宁, 赵黎. 一种光束自动捕获装置及光束捕获方法: 201010185116.9[P]. 2010-10-06.

    Ke X Z, Lu N, Zhao L. Automatic light beam capturing device and light beam capturing method: 201010185116.9[P]. 2010-10-06.

    [30]

    柯熙政, 席晓莉, 刘长城. 大气激光通信中一种新的光束自动捕获方法[J]. 光通信技术, 2004, 28(10): 39−41. doi: 10.3969/j.issn.1002-5561.2004.10.012

    Ke X Z, Xi X L, Liu C C. A new auto beam acquiring method for laser communication in atmosphere[J]. Opt Commun Technol, 2004, 28(10): 39−41. doi: 10.3969/j.issn.1002-5561.2004.10.012

    [31]

    胡启迪. 大气激光通信信标光捕获过程中光斑检测技术研究[D]. 西安: 西安理工大学, 2009.

    Hu Q D. Research on spot detection technology in process of beacon acquisition of laser communication in atmosphere[D]. Xi’an: Xi’an University of Technology, 2009.

    [32]

    柯熙政, 雷思琛, 杨沛松. 大气激光通信光束同轴对准检测方法[J]. 中国激光, 2016, 43(6): 0606003. doi: 10.3788/CJL201643.0606003

    Ke X Z, Lei S C, Yang P S. Beam coaxial alignment detection in atmospheric laser communication[J]. Chin J Lasers, 2016, 43(6): 0606003. doi: 10.3788/CJL201643.0606003

    [33]

    赵奇. 无线激光通信初始捕获系统设计与实现[D]. 西安: 西安理工大学, 2016.

    Zhao Q. Design and implementation of initial acquisition system for wireless laser communication[D]. Xi'an: Xi'an University of Technology, 2016.

    [34]

    徐尉. 无线激光通信ATP系统光斑检测技术研究与实现[D]. 西安: 西安理工大学, 2016.

    Xu W. Research and implement of the laser spot detection in ATP system[D]. Xi’an: Xi’an University of Technology, 2016.

    [35]

    柯熙政, 李世艳. 光斑缺碎情形下光学天线光轴对准实验研究[J]. 光子学报, 2017, 46(4): 0406002. doi: 10.3788/gzxb20174604.0406002

    Ke X Z, Li S Y. Experimental study on optical axis alignment of the optical antenna under the spot broken[J]. Acta Photon Sin, 2017, 46(4): 0406002. doi: 10.3788/gzxb20174604.0406002

    [36]

    柯熙政, 严希, 杨雅淇, 等. 5.2 km距离无线激光通信跟踪实验[J]. 计算机测量与控制, 2018, 26(11): 233−237. doi: 10.16526/j.cnki.11-4762/tp.2018.11.051

    Ke X Z, Yan X, Yang Y Q, et al. 5.2 km distance wireless laser communication tracking experimen[J]. Comput Meas Control, 2018, 26(11): 233−237. doi: 10.16526/j.cnki.11-4762/tp.2018.11.051

    [37]

    Ke X Z, Jing Y K. Far-field laser spot image detection for use under atmospheric turbulence[J]. Opt Eng, 2020, 59(1): 016103.

    [38]

    Ke X Z, Zhang P. Automatic focusing control in beaconless APT system[J]. J Russ Laser Res, 2020, 41(1): 61−71. doi: 10.1007/s10946-020-09848-y

    [39]

    Ke X Z, Liang H L. Airborne laser communication system with automated tracking[J]. Int J Opt, 2021, 2021: 9920368.

    [40]

    杨尚君, 柯熙政, 吴加丽, 等. 利用二维反射镜实现无线光通信快速对准[J]. 中国激光, 2022, 49(11): 1106001. doi: 10.3788/CJL202249.1106001

    Yang S J, Ke X Z, Wu J L, et al. Fast alignment of wireless optical communication using two-dimensional mirror[J]. Chin J Lasers, 2022, 49(11): 1106001. doi: 10.3788/CJL202249.1106001

    [41]

    赵雪. 空间激光通信APT初始捕获及误差分析[D]. 长春: 长春理工大学, 2012.

    Zhao X. The APT initial capture and error analysis of space laser communication[D]. Changchun: Changchun University of Technology, 2012.

    [42]

    柯熙政, 张璞. 一种无线光通信的跟瞄控制系统及跟瞄控制方法: 201910339487.9[P]. 2021-07-20.

    Ke X Z, Zhang P. Tracking and aiming control system and tracking and aiming control method for wireless optical communication: 201910339487.9[P]. 2021-07-20.

    [43]

    张璞. 无线激光通信捕获对准与调焦系统设计[D]. 西安: 西安理工大学, 2020.

    Zhang P. Design of acquisition pointing and focusing system for wireless laser communication[D]. Xi'an: Xi'an University of Technology, 2020.

    [44]

    柯熙政, 陈晓展, 吴加丽. 一种无人机中继激光通信系统: 201810919712.1[P]. 2018-08-14.

    Ke X Z, Chen X Z, Wu J L. A relay laser communication system for an unmanned aerial vehicle: 201810919712.1[P]. 2018-08-14.

    [45]

    梁韩立. 机载激光通信自动跟踪控制系统设计与实现[D]. 西安: 西安理工大学, 2021.

    Liang H L. Design and realization of airborne laser communication automatic tracking control system[D]. Xi'an: Xi'an University of Technology, 2021.

    [46]

    柯熙政, 王姣. 一种基于四象限探测器的光斑对准方法: 201611244466.1[P]. 2017-05-31.

    Ke X Z, Wang J. Light spot aligning method based on four-quadrant detector: 201611244466.1[P]. 2017-05-31.

    [47]

    严希. 无线激光通信APT系统中的光斑跟踪系统研究[D]. 西安: 西安理工大学, 2019.

    Yan X. Research on spot tracking system in APT system of wireless laser communication[D]. Xi’an: Xi’an University of Technology, 2019.

    [48]

    景永康. 无线光通信远场光斑图像检测实验研究[D]. 西安: 西安理工大学, 2020. 西安市科技创新引导项目(NO: 201805030YD8CG14(12))、陕西省重点产业创新项目(2017ZDCXL-GY-06-01)

    Jing Y K. Experimental study on far-field spot image detection for wireless optical communication[D]. Xi’an: Xi’an University of Technology, 2020.

  • 加载中

(32)

(3)

计量
  • 文章访问数:  13876
  • PDF下载数:  1888
  • 施引文献:  0
出版历程
收稿日期:  2022-01-17
修回日期:  2022-03-28
网络出版日期:  2022-07-13
刊出日期:  2022-08-25

目录

/

返回文章
返回