改进型高性能静态像差校正技术

任德清, 张天宇, 王钢. 改进型高性能静态像差校正技术[J]. 光电工程, 2022, 49(3): 210319. doi: 10.12086/oee.2022.210319
引用本文: 任德清, 张天宇, 王钢. 改进型高性能静态像差校正技术[J]. 光电工程, 2022, 49(3): 210319. doi: 10.12086/oee.2022.210319
Ren D Q, Zhang T Y, Wang G. An optimized high-performance technique for adaptive optics static aberration correction[J]. Opto-Electron Eng, 2022, 49(3): 210319. doi: 10.12086/oee.2022.210319
Citation: Ren D Q, Zhang T Y, Wang G. An optimized high-performance technique for adaptive optics static aberration correction[J]. Opto-Electron Eng, 2022, 49(3): 210319. doi: 10.12086/oee.2022.210319

改进型高性能静态像差校正技术

详细信息

An optimized high-performance technique for adaptive optics static aberration correction

More Information
  • 非共光路误差是限制自适应光学系统(adaptive optics, AO)的成像性能达到衍射极限的关键因素,同时AO系统共光路部分也会不可避免地引入静态像差,尤其是在自适应光学系统与望远镜配合使用进行科学观测时。因此,本文提出了一种基于焦面优化的改进型AO系统静态像差校正技术。该方法通过迭代优化算法将单模光纤生成的完美点扩散函数复制到自适应光学系统中来校正系统中的静态像差。相比于我们之前提出的焦面校正法,本文提出的改进型焦面优化技术获得全局优化结果的速度更快,并且在系统初始静态误差极大的情况下,拥有更好的校正性能。当部署于天文或其他需要高质量成像的自适应光学系统中时,该改进型焦面优化技术相较于传统校正法也更加便捷。

  • 加载中
  • Figure 1.  The schematic diagram of AO system for correction

    Figure 2.  The real experimental optical path of AO system for the NCPA measurement and correction

    Figure 3.  Initial focal plane PSF

    Figure 4.  Reference PSF and PSFs after correction.

    Figure 5.  Metric function evolution as a function of iteration steps

    Figure 6.  PSF corrected by using Jo

    Figure 7.  PSF corrected by using Jlg

    Table 1.  Experiment results of different metric functions

    Metric functionRMS/nmSRTime/min
    Jo550.739140
    Jlg280.92460
    J70.99540
    下载: 导出CSV
  • [1]

    Baudoz P, Mas M, Galicher R, et al. Focal plane wavefront sensor sensitivity for ELT planet finder[J]. Proc SPIE, 2010, 7736: 77365S. doi: 10.1117/12.858272

    [2]

    Wallace J K, Rao S, Jensen-Clem R M, et al. Phase-shifting Zernike interferometer wavefront sensor[J]. Proc SPIE, 2011, 8126: 81260F. doi: 10.1117/12.892843

    [3]

    Campbell E W, Bauman B J, Sweider D R, et al. High-accuracy calibration of an adaptive optics system using a phase-shifting diffraction interferometer[J]. Proc SPIE, 1999, 3762: 237−244. doi: 10.1117/12.363579

    [4]

    Gonsalves R A. Phase retrieval and diversity in adaptive optics[J]. Opt Eng, 1982, 21(5): 215829.

    [5]

    Lamb M, Correia C, Sauvage J F, et al. Exploring the operational effects of phase diversity for the calibration of non-common path errors on NFIRAOS[J]. Proc SPIE, 2016, 9909: 99096E.

    [6]

    Wallace J K, Burruss R S, Bartos R D, et al. The Gemini Planet Imager calibration wavefront sensor instrument[J]. Proc SPIE, 2010, 7736: 77365D.

    [7]

    Hinkley S, Oppenheimer B R, Zimmerman N, et al. A new high contrast imaging program at Palomar observatory[J]. Publ Astron Soc Pac, 2011, 123(899): 74−86. doi: 10.1086/658163

    [8]

    Ren D Q, Penn M, Wang H M, et al. A portable solar adaptive optics system[J]. Proc SPIE, 2009, 7438: 74380P. doi: 10.1117/12.824457

    [9]

    Ren D Q, Dong B. Demonstration of portable solar adaptive optics system[J]. Opt Eng, 2012, 51(10): 101705. doi: OptEng

    [10]

    Yamamoto S. Development of inspection robot for nuclear power plant[C]//Proceedings 1992 IEEE International Conference on Robotics and Automation, Nice, 1992, 2: 1559‒1566.

    [11]

    Ren D Q, Dong B, Zhu Y T, et al. Correction of non–common-path error for extreme adaptive optics[J]. Publ Astron Soc Pac, 2012, 124(913): 247−253. doi: 10.1086/664947

    [12]

    Vorontsov M A, Carhart G W, Ricklin J C. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Opt Lett, 1997, 22(12): 907−909. doi: 10.1364/OL.22.000907

    [13]

    Vorontsov M A, Sivokon V P. Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction[J]. J Opt Soc Am A, 1998, 15(10): 2745−2758. doi: 10.1364/JOSAA.15.002745

    [14]

    Vorontsov M A, Yu M. Compensation of distant phase-distorting layers. II. Extended-field-of-view adaptive receiver system[J]. J Opt Soc Am A, 2004, 21(9): 1659−1668. doi: 10.1364/JOSAA.21.001659

    [15]

    Petit C, Sauvage J F, Costille A, et al. SAXO: the extreme adaptive optics system of SPHERE (I) system overview and global laboratory performance[J]. J Astron Telesc Instrum Syst, 2016, 2(2): 025003. doi: 10.1117/1.JATIS.2.2.025003

    [16]

    Fusco T, Sauvage J F, Petit C, et al. Final performance and lesson-learned of SAXO, the VLT-SPHERE extreme AO: from early design to on-sky results[J]. Proc SPIE, 2014, 9148: 91481U.

    [17]

    Liu Y, Ma J Q, He T, et al. Hybrid simulated annealing-hill climbing algorithm for fast aberration correction without wavefront sensor[J]. Opt Precis Eng, 2012, 20(2): 213−219. doi: 10.3788/OPE.20122002.0213

    [18]

    Burke D, Patton B, Huang F, et al. Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy[J]. Optica, 2015, 2(2): 177−185. doi: 10.1364/OPTICA.2.000177

    [19]

    Sauvage J F, Fusco T, Rousset G, et al. Fine calibration and pre-compensation of non-common path aberrations for high performance AO system[J]. Proc SPIE, 2005, 5903: 59030B.

  • 加载中

(7)

(1)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2021-09-30
修回日期:  2022-01-12
录用日期:  2022-02-17
刊出日期:  2022-03-25

目录

/

返回文章
返回