量子光通信中位置修正单检测控制方法

李志俊,毛耀,亓波,等. 量子光通信中位置修正单检测控制方法[J]. 光电工程,2022,49(3): 210311. doi: 10.12086/oee.2022.210311
引用本文: 李志俊,毛耀,亓波,等. 量子光通信中位置修正单检测控制方法[J]. 光电工程,2022,49(3): 210311. doi: 10.12086/oee.2022.210311
Li Z J, Mao Y, Qi B, et al. Research on control technology of single detection based on position correction in quantum optical communication[J]. Opto-Electron Eng, 2022, 49(3): 210311. doi: 10.12086/oee.2022.210311
Citation: Li Z J, Mao Y, Qi B, et al. Research on control technology of single detection based on position correction in quantum optical communication[J]. Opto-Electron Eng, 2022, 49(3): 210311. doi: 10.12086/oee.2022.210311

量子光通信中位置修正单检测控制方法

  • 基金项目:
    国家自然科学基金青年科学基金资助项目(61905253)
详细信息
    作者简介:
    *通讯作者: 毛耀,maoyao@ioe.ac.cn
  • 中图分类号: TP391.41

Research on control technology of single detection based on position correction in quantum optical communication

  • Fund Project: National Natural Science Foundation of China (61905253)
More Information
  • 量子通信光学地面站光学系统中,采用精、高精跟踪两个快速控制反射镜组成单检测模式闭环。为保证系统控制精度和稳定性,控制过程中必须考虑解耦。然而在目标信噪比较低情况下,难以实现精、高精跟踪回路的准确解耦。本文提出在精跟踪、高精跟踪内部增加位置传感器,一方面采用位置传感器闭环提高内环控制对象确定性,便于参数整定,另一方面,位置传感器偏差量反映了电视脱靶量的偏差,精跟踪采用修正位置传感器偏差量进行闭环从而避免了系统解耦。本文分析了基于该方法实现的复合轴控制结构的对象特性,控制系统设计方法及鲁棒性。理论和实验结果表明:目标特性较差的情况下,特别是滞后变化较大的情况下,本文提出的方法不需要进行解耦控制,具有更好的鲁棒性、更高的精度。

  • Overview: As a beam precise capture and tracking structure in quantum communication systems, ATP plays a vital role in the performance of quantum communication. In order to ensure the tracking accuracy and tracking range, the composite axis tracking mode of coarse and fine tracking is mostly used at present. However, in the coarse fine tracking compound axis mode, the size and ratio of the coarse fine tracking field of view are limited. In order to solve this problem, based on the existing optical path architecture of the ATP system, a primary transition field of view is added, and the corresponding tracking mirror of the transition field of view is added, forming a series structure of double fast control mirrors for precision tracking and high-precision tracking. In this structure, the fast deflection mirror with large stroke and low bandwidth and the fine tracking detector with low sampling frequency first form a fine tracking closed loop to complete the fine tracking with a large range and low bandwidth. On this basis, another fast deflection mirror with small stroke and high bandwidth is combined with a high-precision tracking detector with high sampling frequency to form a high-precision tracking closed loop to realize high-precision and high-bandwidth high-precision tracking. In order to further improve the control accuracy, after the double closed-loop stability of fine TV and high-precision TV, the high-precision TV with a high frame rate is also used for the closed-loop of the large travel tracking mirror, forming a single detection control structure. However, the parameter tuning of this structure is based on the small change of object characteristics. At the same time, it is also necessary to accurately calibrate the target characteristics, so as to facilitate the accurate decoupling of fine tracking and high-precision tracking. The debugging of the controller is complex, and the system robustness is poor under the condition of large changes of target and background. In this paper, a relative angle sensor is added in the high-precision tracking and the position inner loop is added on the basis of the high-precision TV closed loop. On the one hand, the certainty of the control object itself is improved and it is convenient for parameter tuning. On the other hand, the deviation of the sensor is used in the fine tracking closed loop to avoid the problem of system decoupling. This paper analyzes the object characteristics, control system design method and robustness of the compound axis control structure based on this method. The theoretical and experimental results show that when the target characteristics are poor, especially when the lag changes greatly, the proposed method does not need decoupling control and has better robustness and higher accuracy.

  • 加载中
  • 图 1  双跟踪镜串联式复合轴控制光路图

    Figure 1.  Compound axis control optical path diagram used series double tracking mirrors

    图 2  复合轴控制框图

    Figure 2.  Compound axis control

    图 3  单检测型复合轴控制框图

    Figure 3.  Compound axis control used single detection

    图 4  精跟踪镜控制框图

    Figure 4.  Control block diagram of fine tracking mirror

    图 5  跟踪镜不同姿态对象特性对比(不加入内环和加入内环对比)。

    Figure 5.  Comparison of characteristics of objects with different attitudes of tracking mirror (without inner ring and with Inner ring).

    图 6  不同时段高精电视图像

    Figure 6.  High precision TV images in different periods

    图 7  不同滞后情况下相同校正器的开环校正特性

    Figure 7.  Open loop correction characteristics of the same corrector under different hysteresis

    图 8  引入相对角传感器后的高精跟踪镜控制框图

    Figure 8.  Control block diagram of high precision tracking mirror after introducing relative angle sensor

    图 9  跟踪镜内部位置闭环特性图

    Figure 9.  Closed loop characteristic diagram of internal position of tracking mirror

    图 10  基于位置修正的单检测复合轴控制系统框架

    Figure 10.  Single detection compound axis control system framework based on position correction

    图 11  实验平台光路图

    Figure 11.  Optical path diagram of experimental platform

    图 12  单检测复合轴控制对象特性

    Figure 12.  Compound axis control object used single detection

    图 13  相同滞后下跟踪方法结果对比

    Figure 13.  Comparison of tracking results under the same lag

    图 14  滞后变化特性对比

    Figure 14.  Comparison of hysteresis variation characteristics

    图 15  不同滞后下跟踪方法结果对比

    Figure 15.  Comparison of tracking results under different delays

    表 1  滞后不变下的跟踪误差

    Table 1.  Tracking error with constant lag

    目标运动频率/Hz跟踪误差RMS/PV/μrad
    系统开环解耦模式位置修正模式
    0.1215.986/610.7862.378/33.3232.825/52.111
    0.3212.949/610.6934.399/54.4625.767/44.911
    0.5211/607.19487.6931/50.02213.34/81.726
    1.0209.494/607.5426.198/134.0652.417/192.902
    下载: 导出CSV

    表 2  滞后变化下的跟踪误差

    Table 2.  Tracking error with variable lag

    目标运动频率/Hz跟踪误差RMS/PV/μrad
    系统开环解耦模式位置修正模式
    0.1215.986/610.786不稳定12.319/68.297
    0.3212.949/610.693不稳定6.277/64.75
    0.5211/607.1948不稳定16.076/93.1
    1.0209.494/607.54不稳定52.846/197.242
    下载: 导出CSV
  • [1]

    Gisin N, Thew R. Quantum communication[J]. Nat Photonics, 2007, 1(3): 165−171. doi: 10.1038/nphoton.2007.22

    [2]

    Nauerth S, Moll F, Rau M, et al. Air-to-ground quantum communication[J]. Nat Photonics, 2013, 7(5): 382−386. doi: 10.1038/nphoton.2013.46

    [3]

    Wang X L, Cai X D, Su Z E, et al. Quantum teleportation of multiple degrees of freedom of a single photon[J]. Nature, 2015, 518(7540): 516−519. doi: 10.1038/nature14246

    [4]

    Yin J, Cao Y, Li Y H, et al. Satellite-based entanglement distribution over 1200 kilometers[J]. Science, 2017, 356(6343): 1140−1144. doi: 10.1126/science.aan3211

    [5]

    Hilkert J M, Kanga G, Kinnear K. Line-of-sight kinematics and corrections for fast-steering mirrors used in precision pointing and tracking systems[J]. Proc SPIE, 2014, 9076: 90760F.

    [6]

    Rabinovich W S, Moore C I, Mahon R, et al. Free-space optical communications research and demonstrations at the U. S. naval research laboratory[J]. Appl Opt, 2015, 54(31): F189−F200. doi: 10.1364/AO.54.00F189

    [7]

    Kaymak Y, Rojas-Cessa R, Feng J H, et al. A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications[J]. IEEE Commun Surv Tut, 2018, 20(2): 1104−1123. doi: 10.1109/COMST.2018.2804323

    [8]

    Xiao Y J, Liu Y F, Dong R, et al. Experiment study of ATP system for free-space optical communications[J]. Optoelectron Lett, 2011, 7(6): 451−453. doi: 10.1007/s11801-011-1083-y

    [9]

    Alvi B A, Asif M, Siddiqui F A, et al. Fast steering mirror control using embedded self-learning fuzzy controller for free space optical communication[J]. Wireless Pers Commun, 2014, 76(3): 643−656. doi: 10.1007/s11277-014-1731-1

    [10]

    Arvizu A, Santos J, Domínguez E, et al. ATP subsystem for optical communications on a cubesat[C]//IEEE International Conference on Space Optical Systems and Applications, 2015: 1–5.

    [11]

    Ren Y, Liu Z H, Chang L, et al. Adaptive sliding mode robust control for virtual compound-axis servo system[J]. Math Probl Eng, 2013, 2013: 343851.

    [12]

    Nielsen T T. Pointing, acquisition, and tracking system for the free-space laser communication system SILEX[J]. Proc SPIE, 1995, 2381: 194−205. doi: 10.1117/12.207403

    [13]

    Kim I I, Riley B, Wong N M, et al. Lessons learned for STRV-2 satellite-to-ground lasercom experiment[J]. Proc SPIE, 2001, 4272: 1−15. doi: 10.1117/12.430772

    [14]

    Zhang M, Zhang L, Wu J C, et al. Detection and compensation of basis deviation in satellite-to-ground quantum communications[J]. Opt Express, 2014, 22(8): 9871−9886. doi: 10.1364/OE.22.009871

    [15]

    Yin J, Ren J G, Lu H, et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels[J]. Nature, 2012, 488(7410): 185−188. doi: 10.1038/nature11332

    [16]

    Farr W, Sburlan S, Sahasrabudhe A, et al. Deep space acquisition and tracking with single photon detector arrays[C]//2011 International Conference on Space Optical Systems and Applications (ICSOS), 2011: 117–121.

    [17]

    Borrello M. A multi stage pointing acquisition and tracking (PAT) control system approach for air to air laser communications[C]//Proceedings of the 2005, American Control Conference, 2005, 6: 3975–3980.

    [18]

    Wang J Y, Yang B, Liao S K, et al. Direct and full-scale experimental verifications towards ground–satellite quantum key distribution[J]. Nat Photonics, 2013, 7(5): 387−393. doi: 10.1038/nphoton.2013.89

    [19]

    Ortiz G G, Lee S, Monacos S P, et al. Design and development of robust ATP subsystem for the Altair UAV-to-ground lasercomm 2.5-Gbps demonstration[J]. Proc SPIE, 2003, 4975: 1−12. doi: 10.1117/12.478931

    [20]

    Tang T, Niu S X, Yang T, et al. Vibration rejection of Tip-Tilt mirror using improved repetitive control[J]. Mech Syst Signal Proc, 2019, 116: 432−442. doi: 10.1016/j.ymssp.2018.06.060

    [21]

    Zhou X, Mao Y, Duan Q W, et al. Multi-order cascade lag control for high precision tracking systems[J]. ISA Trans, 2022, 120: 318−329. doi: 10.1016/j.isatra.2021.03.032

    [22]

    亓波. 量子通信光学地面站ATP关键技术研究[D]. 成都: 中国科学院研究生院(光电技术研究所), 2014.

    Qi B. Study on acquisition, tracking and pointing key technology of optical ground station for quantum communication[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2014.

    [23]

    王强, 傅承毓, 陈科, 等. 预测轨迹修正单检测型复合轴控制方法[J]. 光电工程, 2007, 34(4): 17−21,38.

    Wang Q, Fu C Y, Chen K, et al. Single detector compound axis control based on realtime predicted trajectory correcting method[J]. Opto-Electron Eng, 2007, 34(4): 17−21,38.

    [24]

    聂光戍, 臧守飞, 郑磊刚, 等. 星间光通信复合轴跟踪结构性能和误差抑制能力分析[J]. 空军工程大学学报(自然科学版), 2011, 12(2): 47−51.

    Nie G S, Zang S F, Zheng L G, et al. Study of capability and error restraint ability of optical inter-satellite communications compound axis tracking structure[J]. J Air Force Eng Univ (Nat Sci Ed), 2011, 12(2): 47−51.

    [25]

    马佳光, 唐涛. 复合轴精密跟踪技术的应用与发展[J]. 红外与激光工程, 2013, 42(1): 218−227. doi: 10.3969/j.issn.1007-2276.2013.01.040

    Ma J G, Tang T. Review of compound axis servomechanism tracking control technology[J]. Infrared Laser Eng, 2013, 42(1): 218−227. doi: 10.3969/j.issn.1007-2276.2013.01.040

    [26]

    丛爽, 汪海伦, 邹紫盛, 等. 量子导航定位系统中的捕获和粗跟踪技术[J]. 空间控制技术与应用, 2017, 43(1): 1−10. doi: 10.3969/j.issn.1674-1579.2017.01.001

    Cong S, Wang H L, Zou Z S, et al. Techniques of acquisition and coarse tracking in the quantum navigation and positioning system[J]. Aeros Control Appl, 2017, 43(1): 1−10. doi: 10.3969/j.issn.1674-1579.2017.01.001

    [27]

    唐涛, 杨涛, 黄永梅, 等. 具有延迟特性的FSM系统中PI-PI控制器[J]. 光电工程, 2013, 40(5): 1−5.

    Tang T, Yang T, Huang Y M, et al. PI-PI controller for the time delay control system of FSM[J]. Opto-Electron Eng, 2013, 40(5): 1−5.

    [28]

    Tang T, Ma J G, Ge R. PID-I controller of charge coupled device-based tracking loop for fast-steering mirror[J]. Opt Eng, 2011, 50(4): 043002. doi: 10.1117/1.3567059

    [29]

    唐涛, 马佳光, 陈洪斌, 等. 光电跟踪系统中精密控制技术研究进展[J]. 光电工程, 2020, 47(10): 200315.

    Tang T, Ma J G, Chen H B, et al. A review on precision control methodologies for optical-electric tracking control system[J]. Opto-Electron Eng, 2020, 47(10): 200315.

    [30]

    徐田荣, 阮勇, 赵志强, 等. 基于误差的观测器在光电跟踪系统中的应用[J]. 光电工程, 2020, 47(11): 190713.

    Xu T R, Ruan Y, Zhao Z Q, et al. Error-based observer control of an optic-electro tracking control system[J]. Opto-Electron Eng, 2020, 47(11): 190713.

    [31]

    牛帅旭, 蒋晶, 唐涛, 等. 望远镜中扰动抑制的Youla控制器优化设计[J]. 光电工程, 2020, 47(9): 190547.

    Niu S X, Jiang J, Tang T, et al. Optimal design of Youla controller for vibration rejection in telescopes[J]. Opto-Electron Eng, 2020, 47(9): 190547.

    [32]

    阮勇, 徐田荣, 杨涛, 等. 具有延迟特性的倾斜镜系统中速度-位置控制方法[J]. 光电工程, 2020, 47(12): 200006.

    Ruan Y, Xu T R, Yang T, et al. Position-rate control for the time delay control system of tip-tilt mirror[J]. Opto-Electron Eng, 2020, 47(12): 200006.

  • 加载中

(16)

(2)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2021-09-24
修回日期:  2022-01-04
刊出日期:  2022-03-25

目录

/

返回文章
返回