用于测量雷电流的全光纤电流传感器

黄瑞涛, 段艳涛, 石立华, 等. 用于测量雷电流的全光纤电流传感器[J]. 光电工程, 2019, 46(5): 180363. doi: 10.12086/oee.2019.180363
引用本文: 黄瑞涛, 段艳涛, 石立华, 等. 用于测量雷电流的全光纤电流传感器[J]. 光电工程, 2019, 46(5): 180363. doi: 10.12086/oee.2019.180363
Huang Ruitao, Duan Yantao, Shi Lihua, et al. All-fiber optical current transformer for measuring lightning current[J]. Opto-Electronic Engineering, 2019, 46(5): 180363. doi: 10.12086/oee.2019.180363
Citation: Huang Ruitao, Duan Yantao, Shi Lihua, et al. All-fiber optical current transformer for measuring lightning current[J]. Opto-Electronic Engineering, 2019, 46(5): 180363. doi: 10.12086/oee.2019.180363

用于测量雷电流的全光纤电流传感器

  • 基金项目:
    国家重点研发计划(2017YFF0104300)
详细信息
    作者简介:
    *通讯作者: 段艳涛(1980-),男,博士,讲师,硕士生导师,主要从事电磁防护与电磁仿真的研究。E-mail:dcmchdyt@126.com
  • 中图分类号: TM452; TP212

All-fiber optical current transformer for measuring lightning current

  • Fund Project: Supported by National Key R&D Program of China (2017YFF0104300)
More Information
  • 雷电流测量是研究雷电的一个重要部分。为此,本文研究了一种用于测量雷电流的全光纤电流传感器。首先,介绍了光纤电流传感器的基本原理及结构组成;其次,在实验室中对该传感器的响应速度、测量精度及测量范围等性能指标进行了测试。结果表明,该传感器的响应速度为微秒级,可测量范围在1 kA~100 kA,动态范围大于40 dB,测量误差小于5%,测量波形与标准的Pearson电流探头测试波形相比一致性较好,该研究为雷电流测量提供了一种新方法。

  • Overview: It is an important part for studying lightning to measure lightning current. The time domain waveform of lightning current is a fast pulse. The traditional method of measuring lightning current is based on the principle of electromagnetic induction. The traditional current sensor is bulky, heavy and difficult to insulate. It is inevitably limited by the traditional measurement method, such as magnetic saturation. All-fiber optical current transformer (AFOCT) has many advantages over traditional electromagnetic sensors, such as large dynamic range, small size, strong anti-electromagnetic interference capability, high safety, good insulation and light weight. Consequently, this paper studied an AFOCT for measuring lightning currents. Firstly, the basic principle and structure of the AFOCT are introduced. The current transformer is based on Faraday magneto-optical effect and Ampere's law. It adopts reflecting optical path system and closed-loop detection scheme. The scheme has the advantages of large dynamic range and high detection precision. Secondly, the performance including the response speed, measurement accuracy and measurement range was tested in the laboratory. The typical lightning current is measured by the AFOCT. The tested current includes the waveform of lightning current component A and the lightning current 8/20 μs waveform. The waveform of lightning current component A is specified in the national military standard GJB1389A, and it is also used by the US military standard widely. It is the waveform required for lightning protection test of equipment. The waveform of lightning current 8/20 μs has relevant regulations in IEC standards and national standards, and it is mainly used for injection testing of lightning protection devices. Therefore, these two waveforms were used in the test, and they are respectively generated by two pulse current generators with adjustable output levels. The results of measuring the waveform of lightning current component A by the AFOCT are used to obtain the sensor's ability to detect small currents. The results of measuring the waveform of lightning current 8/20 μs by the AFOCT are used to obtain the sensor's ability detect large currents and the upper limit of the range in different turns. Through the testing of the AFOCT, the measurement accuracy and dynamic range of the sensor are obtained. The results show that the response speed of the sensor is in microsecond. The measurable range is over 1 kA~100 kA. The dynamic range is greater than 40 dB and the measurement error is less than 5%. The measurement waveform of all-fiber optical current transformer coincides with that of standard Pearson current probe. The paper provides a new method for lightning current measurement.

  • 加载中
  • 图 1  AFOCT的结构原理图

    Figure 1.  Schematic diagram of AFOCT

    图 2  雷电流A波波形测量

    Figure 2.  Lightning measurement for current component A

    图 3  雷电流A波波形测量结果对比

    Figure 3.  Comparison for measured results of lightning current component A

    图 4  传感器测量雷电流A波的频谱及系统函数。(a)频谱;(b)系统函数

    Figure 4.  The spectrum and system function of lightning current component A. (a) Spectrum; (b) System function

    图 5  不同匝数的传感器测量波形

    Figure 5.  Measurement waveforms of sensor in different loops number

    图 6  测量雷电流A波的误差曲线

    Figure 6.  The error curve of measuring lightning current component A

    图 7  雷电流8/20 μs波形测量

    Figure 7.  Lightning measurement for current 8/20 μs waveform

    图 8  测量8/20 μs波形结果对比

    Figure 8.  Comparison for measured result of lightning current 8/20 μs waveform

    图 9  测量8/20 μs雷电流波形的误差曲线

    Figure 9.  The error curve of measuring lightning current 8/20 μs waveform

  • [1]

    Pellinen D G, Di Capua M S, Sampayan S E, et al. Rogowski coil for measuring fast, high-level pulsed currents[J]. Review of Scientific Instruments, 1980, 51(11): 1535-1540. doi: 10.1063/1.1136119

    [2]

    陈景亮, 姚学玲, 孙伟, 等.两种典型Rogowski线圈的研制[J].高电压技术, 2004, 30(7): 14-16. doi: 10.3969/j.issn.1003-6520.2004.07.006

    Chen J L, Yao X L, Sun W, et al. The development of two typical Rogowski coils[J]. High Voltage Engineering, 2004, 30(7): 14-16. doi: 10.3969/j.issn.1003-6520.2004.07.006

    [3]

    Moreno M V R, Robles G, Albarracín R, et al. Study on the self-integration of a Rogowski coil used in the measurement of partial discharges pulses[J]. Electrical Engineering, 2017, 99(3): 817-826. doi: 10.1007/s00202-016-0456-4

    [4]

    Baranov M I, Kniaziev V V, Rudakov S V. The coaxial shunt for measurement of current pulses of artificial lightning with the amplitude up to ±220 kA[J]. Instruments and Experimental Techniques, 2018, 61(4): 501-505. doi: 10.1134/S0020441218030156

    [5]

    周璧华, 刘培山, 何伟, 等.地闪雷电流间接测量技术[J].解放军理工大学学报(自然科学版), 2012, 13(6): 604-610. doi: 10.7666/j.issn.1009-3443.201206003

    Zhou B H, Liu P S, He W, et al. Indirect measurement of cloud-to-ground lightning current[J]. Journal of PLA University of Science and Technology (Nature Science Edition), 2012, 13(6): 604-610. doi: 10.7666/j.issn.1009-3443.201206003

    [6]

    付亚鹏, 高成, 杨波, 等.紫峰大厦雷电流全波测量研究[J].微波学报, 2017, 33(5): 24-29. doi: 10.14183/j.cnki.1005-6122.201705005

    Fu Y P, Gao C, Yang B, et al. Research on Zifeng tower lightning current full wave measurement[J]. Journal of Microwaves, 2017, 33(5): 24-29. doi: 10.14183/j.cnki.1005-6122.201705005

    [7]

    Yang B, Fu Y P, Li Y X, et al. Optically powered lightning current measurement system for high-tower observation[J]. IEEE Access, 2018, 6: 17022-17028. doi: 10.1109/ACCESS.2018.2799299

    [8]

    刘晔, 苏彦明, 王彩堂.光纤(光学)电流传感器的现状及发展[J].应用光学, 1998, 19(5): 21-25. http://d.old.wanfangdata.com.cn/Periodical/cgqjs200207001

    Liu Y, Su Y M, Wang C T. The state and development of optical fiber current transducer[J]. Journal of Applied Optics, 1998, 19(5): 21-25. http://d.old.wanfangdata.com.cn/Periodical/cgqjs200207001

    [9]

    王巍, 张志鑫, 杨仪松.全光纤式光学电流互感器技术及工程应用[J].供用电, 2009, 26(1): 45-48. doi: 10.3969/j.issn.1006-6357.2009.01.013

    Wang W, Zhang Z X, Yang Y S. The fiber optical current transformer (FOCT) technology and it's engineering application[J]. Distribution and Utilization, 2009, 26(1): 45-48. doi: 10.3969/j.issn.1006-6357.2009.01.013

    [10]

    黄学卫, 董玉玲, 董丽丽.数字化变电站中的非常规互感器[J].电力系统保护与控制, 2009, 37(8): 89-92. doi: 10.3969/j.issn.1674-3415.2009.08.020

    Huang X W, Dong Y L, Dong L L. Unconventional mutual inductor of digital substation[J]. Power System Protection and Control, 2009, 37(8): 89-92. doi: 10.3969/j.issn.1674-3415.2009.08.020

    [11]

    王夏霄, 张春熹, 张朝阳, 等.一种新型全数字闭环光纤电流互感器方案[J].电力系统自动化, 2006, 30(16): 77-80. doi: 10.3321/j.issn:1000-1026.2006.16.016

    Wang X X, Zhang C X, Zhang C Y, et al. A new All digital closed-loop fiber optic current transformer[J]. Automation of Electric Power Systems, 2006, 30(16): 77-80. doi: 10.3321/j.issn:1000-1026.2006.16.016

    [12]

    李九虎, 须雷, 罗苏南, 等.电子式互感器在数字化变电站的应用[J].江苏电机工程, 2007, 26(S1): 44-47. doi: 10.3969/j.issn.1009-0665.2007.z1.015

    Li J H, Xu L, Luo S N, et al. Application of electronic transformer in digital substation[J]. Jiangsu Electrical Engineering, 2007, 26(S1): 44-47. doi: 10.3969/j.issn.1009-0665.2007.z1.015

    [13]

    张朝阳, 张春熹, 王夏霄, 等.反射式光纤电流传感器频率特性计算和测试[J].光电工程, 2007, 34(7): 88-92. doi: 10.3969/j.issn.1003-501X.2007.07.020

    Zhang C Y, Zhang C X, Wang X X, et al. Frequency characteristics of reflecting fiber-optic current transducer[J]. Opto-Electronic Engineering, 2007, 34(7): 88-92. doi: 10.3969/j.issn.1003-501X.2007.07.020

    [14]

    张朝阳, 张春熹, 王夏霄, 等.闭环全光纤电流互感器相位差的计算与测试[J].仪器仪表学报, 2009, 30(1): 152-156. http://d.old.wanfangdata.com.cn/Periodical/yqyb200901029

    Zhang C Y, Zhang C X, Wang X X, et al. Calculation and test of phase difference of fiber optic current transducer[J]. Chinese Journal of Scientific Instrument, 2009, 30(1): 152-156. http://d.old.wanfangdata.com.cn/Periodical/yqyb200901029

    [15]

    Ye M, Li K, Wang J G, et al. Fiber optic lightning current sensor[J]. Proceedings of SPIE[J]. The International Society for Optical Engineering, 1995: 269-271.10.1117/12.221708

    [16]

    Nguyen T X, Ely J J, Szatkowski G G, et al. Fiber-optic sensor for aircraft lightning current measurement[C]//Proceedings of 2012 International Conference on Lightning Protection, 2012: 1-7.10.1109/ICLP.2012.6344287

    [17]

    Nguyen T X, Ely J J, Szatkowski G N. A fiber-optic current sensor for lightning measurement applications[J]. Proceedings of SPIE, 2015, 9480: 94800X. doi: 10.1117/12.2179195

    [18]

    王婧.光纤直接雷电测量技术研究[D].武汉: 华中科技大学, 2008.

    Wang J. Research of direct lightning measurement with optical fiber[D]. Wuhan: Huazhong University of Science and Technology, 2008.10.7666/d.d064046

    [19]

    Blake J, Tantaswadi P, de Carvalho R T. In-line sagnac interferometer current sensor[J]. IEEE Transactions on Power Delivery, 1996, 11(1): 116-121. doi: 10.1109/61.484007

    [20]

    张桂才.光纤陀螺原理与技术[M].北京:国防工业出版社, 2008.

    Zhang G C. The Principles and Technologies of fiber-Optic Gyroscope[M]. Beijing: National Defense Industry Press, 2008.

    [21]

    国防科学技术工业委员会.系统电磁兼容性要求: GJB 1389-92[S].北京: 国防科学技术工业委员会, 1992.

    COSTIND. Electromagnetic compatibility requirments for systems: GJB 1389-92[S]. Beijing: COSTIND, 1992.

  • 加载中

(9)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2018-07-11
修回日期:  2018-11-03
刊出日期:  2019-05-01

目录

/

返回文章
返回