基于EMD-LWT的光纤陀螺阈值去噪

戴邵武, 郑百东, 戴洪德, 等. 基于EMD-LWT的光纤陀螺阈值去噪[J]. 光电工程, 2019, 46(5): 180333. doi: 10.12086/oee.2019.180333
引用本文: 戴邵武, 郑百东, 戴洪德, 等. 基于EMD-LWT的光纤陀螺阈值去噪[J]. 光电工程, 2019, 46(5): 180333. doi: 10.12086/oee.2019.180333
Dai Shaowu, Zheng Baidong, Dai Hongde, et al. Fiber optic gyroscope threshold denoising based on EMD-LWT[J]. Opto-Electronic Engineering, 2019, 46(5): 180333. doi: 10.12086/oee.2019.180333
Citation: Dai Shaowu, Zheng Baidong, Dai Hongde, et al. Fiber optic gyroscope threshold denoising based on EMD-LWT[J]. Opto-Electronic Engineering, 2019, 46(5): 180333. doi: 10.12086/oee.2019.180333

基于EMD-LWT的光纤陀螺阈值去噪

  • 基金项目:
    国防科技项目基金(F062102009)
详细信息
    作者简介:
    *通讯作者: 郑百东(1993-),男,硕士,主要从事飞行器综合导航技术的研究。E-mail:2219229392@qq.com
  • 中图分类号: V241.5

Fiber optic gyroscope threshold denoising based on EMD-LWT

  • Fund Project: Supported by Defense Science and Technology Project Foundation of China (F062102009)
More Information
  • 光纤陀螺(FOG)温度漂移数据常常淹没在各种噪声背景中,直接补偿建模漂移信号十分困难,为了更好地消除混杂在光纤陀螺温漂数据中的噪声,提出了一种经验模态分解(EMD)和提升小波变换(LWT)相结合的EMD-LWT滤波方法对光纤陀螺输出信号进行预处理。首先对光纤陀螺含噪信号进行EMD分解,根据信息熵值判断本征模态函数(IMF)的噪声项和混合模态项,然后对噪声项进行LWT去噪,混合模态项进行小波分析去噪。对某干涉型FOG进行静态测试获得陀螺漂移数据,本文提出方法与小波变换和提升小波变换滤波方法进行了对比分析。实测数据计算结果表明,本文提出的EMD-LWT滤波算法具有最好的滤波效果,经处理后重构信号的均方根误差(RMSE)下降了63%,有效地滤除了FOG输出中的噪声。

  • Overview: Fiber optic gyro (FOG) is an inertial sensor based on the Sagnac effect. It has the advantages of high reliability, high measurement accuracy, and ease of integration. It has become an ideal device for inertial navigation systems. The collected FOG drift data is affected by many factors such as the light source, fiber bending, and ambient temperature, making it often submerged in the noise and leading to difficulties in direct modeling compensation. In order to establish an accurate error compensation model, data preprocessing is demanded to output data on the gyro.

    In this paper, a hybrid EMD-LWT filtering algorithm based on empirical mode decomposition (EMD) and lifting wavelet transform (LWT) threshold denoising is proposed to preprocess gyro signals. Firstly, the steps of empirical mode decomposition are introduced. After the signal is decomposed by EMD, a finite number of high-to-low frequency intrinsic mode functions (IMFs) are obtained. The low order part represents the high frequency part of the signal, which usually contains a sharp part or noise; An IMF with a large order corresponds to the low-frequency part of the signal, and it is generally considered that the noise in the low-frequency component has little effect. It is decomposed into noise-dominated IMF sets, where noise and effective information coexist and a signal low-frequency trend. The threshold filtering method based on EMD is a process to select and threshold three types of IMF sets. The information entropy and the energy of the signal serve as a measurement of the complexity of the signal and determine the boundaries of the noise component and the mixed modal component.

    Considering that the traditional EMD time-scale filtering algorithm simply removes one or more IMF components to achieve filtering, resulting in the useful signals along the corresponding components being deleted together. It will lead to severe signal distortion. The lifting wavelet analysis is introduced into the EMD method, and the high-frequency IMF component is subjected to the narrowband re-decomposition of the lifting wavelet to improve the resolution of the high-frequency component; considering the noise decomposition after being distributed on each IMF component, combined with the characteristics of wavelet threshold denoising. All IMF components are subjected to wavelet threshold denoising.

    A static FOG data was collected as a test signal for verifying the effectiveness of the algorithm. The hybrid EMD-LWT was compared with the wavelet transform (WT) and the lifting wavelet transform (LWT) threshold filtering methods. The simulation results show that the root mean squared error (RMSE) of the signal is reduced by 63% through the EMD-LWT filtering algorithm and the denoising effect is obvious.

  • 加载中
  • 图 1  EMD阈值滤波数据流图

    Figure 1.  Flowchart of EMD threshold filtering

    图 2  小波提升方案的分解和重构过程。(a)提升分解; (b)提升重构

    Figure 2.  Decomposition and reconstruction process of wavelet lifting scheme. (a) Lifting decomposition; (b) Lifting reconstruction

    图 3  EMD-LWT滤波算法

    Figure 3.  EMD-LWT filtering algorithm

    图 4  光纤陀螺的原始含噪信号

    Figure 4.  The original noisy signal of FOG

    图 5  FOG温度漂移EMD分解图。(a) fimf(1); (b) fimf(2); (c) fimf(3); (d) fimf(4); (e) fimf(5); (f) fimf(6); (g) fimf(7); (h) Trend

    Figure 5.  EMD decomposition of FOG temperature drift. (a) fimf(1); (b) fimf(2); (c) fimf(3); (d) fimf(4); (e) fimf(5); (f) fimf(6); (g) fimf(7); (h) Trend

    图 6  IMF的信息熵

    Figure 6.  Information entropy of intrinsic mode function

    图 7  IMF信号的能量

    Figure 7.  Energy of intrinsic mode function

    图 8  三种滤波方法的性能对比

    Figure 8.  Performance comparison of three filtering methods

    表 1  四种滤波方法的性能对比

    Table 1.  Performance comparison of the four filtering methods

    指标 原信号 DB4小波消噪 Haar提升小波 DB4提升小波 EMD-LWT
    RMES/[(°)·h-1] 1.374e-3 6.720e-4 6.622e-4 5.467e-4 5.116e-4
    SSE/[(°)·h-1]2 1.080e-2 2.590e-3 2.507e-3 1.709e-3 1.497e-3
    R/[(°)·h-1] 1.65e-2 5.577e-3 4.941e-3 4.706e-3 4.323e-3
    下载: 导出CSV
  • [1]

    李绪友, 刘攀, 光星星, 等.保偏光纤陀螺横向磁场误差的温度依赖性[J].光学学报, 2018, 38(1): 0106006. doi: 10.3788/aos201838.0106006

    Li X Y, Liu P, Guang X X, et al. Temperature dependence of transverse magnetic error in a polarization maintaining fiber optic gyroscope[J]. Acta Optica Sinica, 2018, 38(1): 0106006. doi: 10.3788/aos201838.0106006

    [2]

    律新伟, 武俊勇, 孙丽艳.单模光纤环热应力双折射仿真分析[J].导航与控制, 2015, 14(3): 94–97. doi: 10.3969/j.issn.1674-5558.2015.03.016

    Lv X W, Wu J Y, Sun L Y. Thermal stress birefringence simulation of single mode optic fiber loop[J]. Navigation and Control, 2015, 14(3): 94–97. doi: 10.3969/j.issn.1674-5558.2015.03.016

    [3]

    陈一平, 梁璀, 张登伟, 等.光纤陀螺磁温耦合效应[J].光子学报, 2018, 47(5): 0506005. doi: 10.3788/gzxb20184705.0506005

    Chen Y P, Liang C, Zheng D W, et al. Magnetic-temperature coupling effect of a fiber optic gyroscope[J]. Acta Photonica Sinica, 2018, 47(5): 0506005. doi: 10.3788/gzxb20184705.0506005

    [4]

    Dang S W, Tian W F, Qian F. EMD- and LWT-based stochastic noise eliminating method for fiber optic gyro[J]. Measurement, 2011, 44(10): 2190–2193. doi: 10.1016/j.measurement.2011.07.016

    [5]

    Li Z H, Meng Z, Liu T G, et al. A novel method for determining and improving the quality of a quadrupolar fiber gyro coil under temperature variations[J]. Optics Express, 2013, 21(2): 2521–2530. doi: 10.1364/OE.21.002521

    [6]

    吕品, 刘建业, 赖际舟, 等.光纤陀螺实时小波去噪中的阈值选取[J].弹箭与制导学报, 2009, 29(1): 18–22. doi: 10.3969/j.issn.1673-9728.2009.01.006

    Lv P, Liu J Y, Lai J Z, et al. Research on threshold algorithm in real-time wavelet de-noising of FOG[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(1): 18–22. doi: 10.3969/j.issn.1673-9728.2009.01.006

    [7]

    王庆贺.基于小波去噪与DRNN的光纤陀螺随机误差建模研究[J].航空兵器, 2015(4): 16–20. doi: 10.3969/j.issn.1673-5048.2015.04.004

    Wang Q H. Research of gyro random error modeling based on the wavelet and DRNN[J]. Aero Weaponry, 2015(4): 16–20. doi: 10.3969/j.issn.1673-5048.2015.04.004

    [8]

    Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903–995. doi: 10.1098/rspa.1998.0193

    [9]

    Komaty A, Boudraa A O, Augier B, et al. EMD-based filtering using similarity measure between probability density functions of IMFs[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(1): 27–34. doi: 10.1109/TIM.2013.2275243

    [10]

    席旭刚, 武昊, 罗志增.基于EMD自相关的表面肌电信号消噪方法[J].仪器仪表学报, 2014, 35(11): 2494–2500. doi: 10.3969/j.issn.0254-3087.2014.11.011

    Xi X G, Wu H, Luo Z Z. De-noising method of the sEMG based on EMD autocorrelation[J]. Chinese Journal of Scientific Instrument, 2014, 35(11): 2494–2500. doi: 10.3969/j.issn.0254-3087.2014.11.011

    [11]

    刘海江, 刘世高, 李敏.换挡加速度信号的EMD和小波阈值降噪方法[J].噪声与振动控制, 2018, 38(2): 198–203. doi: 10.3969/j.issn.1006-1355.2018.02.037

    Liu H J, Liu S G, Li M. EMD and wavelet threshold denoising method of gear-shift acceleration signals[J]. Noise and Vibration Control, 2018, 38(2): 198–203. doi: 10.3969/j.issn.1006-1355.2018.02.037

    [12]

    Bekiros S, Nguyen D K, Junior L S, et al. Information diffusion, cluster formation and entropy-based network dynamics in equity and commodity markets[J]. European Journal of Operational Research, 2017, 256(3): 945–961. doi: 10.1016/j.ejor.2016.06.052

    [13]

    Belazi A, El-Latif A A A, Diaconu A V, et al. Chaos-based partial image encryption scheme based on linear fractional and lifting wavelet transforms[J]. Optics and Lasers in Engineering, 2017, 88: 37–50. doi: 10.1016/j.optlaseng.2016.07.010

    [14]

    Chen X Y, Shen C. Study on temperature error processing technique for fiber optic gyroscope[J]. Optik, 2013, 124(9): 784–792. doi: 10.1016/j.ijleo.2012.02.008

    [15]

    杨秀芳, 张伟, 杨宇祥.基于提升小波变换的雷达生命信号去噪技术[J].光学学报, 2014, 34(3): 0328003. doi: 10.3788/AOS201434.0328003

    Yang X F, Zhang W, Yang Y X. Denoising technology of radar life signal based on lifting wavelet transform[J]. Acta Optica Sinica, 2014, 34(03): 0328003. doi: 10.3788/AOS201434.0328003

    [16]

    Li M X, Mao H P, Zhang Y C, et al. Fusion algorithm for multi–sensor images based on PCA and lifting wavelet transformation[J]. New Zealand Journal of Agricultural Research, 2007, 50(5): 667–671. doi: 10.1080/00288230709510336

  • 加载中

(8)

(1)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2018-06-21
修回日期:  2018-10-25
刊出日期:  2019-05-01

目录

/

返回文章
返回