-
摘要:
偏振作为光的基本特性之一,其产生、调控和探测被广泛应用于通信、成像、光学加密等领域。然而传统的偏振器件存在体积大、集成度低等问题。亚波长尺度的超表面由于其独特的光场调控机制,为偏振器件的小型化和低成本提供了创新性的解决方案。本文对近年来基于超表面的偏振器件研究进展及超表面制备工艺进行综述。从超表面相位调控机理入手,简单介绍了传输相位、几何相位、广义几何相位和共振相位的调控方法,重点总结了偏振转换、偏振分束、矢量涡旋光发生器、高阶庞加莱球光学加密、偏振多通道全息、偏振探测等不同超表面偏振器件及其制备工艺,最后展望了该领域可能的发展趋势和应用前景。
Abstract:Polarization, as one of the basic characteristics of light, is widely utilized in communication, imaging, optical encryption, and other fields. However, traditional polarization devices face numerous problems such as large size and low integration. Due to their unique light field manipulation mechanisms, subwavelength-scale metasurfaces offer innovative solutions for miniaturization and cost reduction of polarization devices. This paper reviews recent advances in metasurface-based polarization devices and fabrication techniques. Starting from the phase manipulation mechanisms of metasurfaces, the article briefly introduces methods for controlling the transmission phase, geometric phase, generalized geometric phase, and resonance phase. The focus is summarizing various metasurface polarization devices and their fabrication, including polarization conversion, polarization beam splitting, vector vortex beam generators, high-order Poincaré sphere optical encryption, polarization multi-channel holography, and polarization detection. Finally, we discuss potential development trends and application prospects in this field.
-
Key words:
- polarization device /
- metasurface /
- polarization detection /
- multifunction /
- phase regulation
-
Overview: Polarization devices are significant optical components in polarized optical systems such as optical information processing, optical measurement, polarization detection, and communication. Traditional polarizers rely on the birefringence effect of natural crystals or the polarization selectivity of multilayer film structures, which requires accumulated optical path differences to achieve phase control. The inherent characteristics of the former necessitate significant thickness to separate the two polarization states, while the latter, as an alternative, significantly reduces thickness but involves a complex manufacturing process and offers high extinction ratios only within narrow bands and at small incident angles. These defects greatly restrict the development and application of these polarizers. Metasurface, as a novel type of optical field modulator, is generally composed of sub-wavelength meta-atom arrays. It can introduce phase discontinuities and enable precise control of the polarization state of incident light. Metasurface polarization devices meet the quality of the optical field and have the advantages of small size, lightweight, high design freedom, and tunable bandwidth, unveiling fascinating approaches to develop the next-generation on-chip polarization devices. In this paper, the basic process of designing metasurface polarization devices is discussed. Furthermore, four different meta-atom polarization modulation methods are introduced. As the basic units of metasurfaces, the polarization characteristics of meta-atoms are crucial for designing metasurfaces with specific polarization responses. Besides, common homogeneous polarization states and more complex types such as radial vector beams and azimuthal vector beams are introduced, which have unique advantages and application value in fields such as optical communication and microscopy imaging. Then, the research progress of different polarization devices is discussed in detail. Finally, the metasurface fabrication technologies are discussed. Overall, this review presents the principle, development, and fabrication in an all-around way, focusing on the various applications of metasurface polarizers in planar optical devices, and puts forward the existing problems and possible solutions in the design and processing of metasurface polarization devices.
-
图 4 (a) 等离子体超表面偏振转换示意图[67];(b) 等离子体超表面偏振转换器单元结构及其计算的反射系数和相位曲线图[67];(c) 四种纳米结构随角度θ变化的计算线偏振度及线偏振角曲线[67];(d) 所制备的超表面偏振转换器SEM图[67]
Figure 4. (a) Schematic image of plasma metasurface polarization conversion[67]; (b) Plasma metasurface polarization converter cell structure and calculated reflection coefficient and phase curve[67]; (c) Calculated degree of linear polarization (DoLPs) and angle of linear polarization (AoLPs) of the four designed nano structures as a function of the rotation angle of θ[67]; (d) SEM image of the fabricated metasurface polarization conversion[67]
图 5 (a) 熔融石英衬底上的TiO2纳米柱超表面示意图(左)和SEM(右)图像[72];(b) LP偏振入射下仅用传输相位调控示意图(左),透射系数图和相移图(右)[72];(c) CP偏振入射下用传输相位和PB相位同时调控示意图(左),透射系数图和相移图(右)[72];(d) 全Stokes探测实验装置示意图[72];(e) 庞加莱球面上所选的六组基偏振态入射下超表面的实验和模拟强度分布以及相应Stokes参数重建[72]
Figure 5. (a) Schematic (left) and SEM (right) image of the designed metasurface consisting of TiO2 nanopillars on a fused-silica substrate[72]; (b) Schematic of the LP polarization manipulation (left), which employs only the propagation phase. The transmission coefficient and phase shift (right)[72]; (c) Schematic of the CP polarization manipulation (left) achieved by combining propagation and PB phases. The conversion efficiency and phase shift (right)[72]; (d) Experimental setup for full-Stokes polarimetry[72]; (e) The experimental and simulated intensity distributions of the metasurface and corresponding reconstructed Stokes parameters for the selected six basis polarization states on a Poincaré sphere[72]
图 6 (a) 具有偏振相关的同轴宽带消色差聚焦涡旋光发生器生成示意图[82];(b) 偏振控制的涡旋光发生器SEM图[82];(c)测量所制备超器件的实验系统示意图[82];(d) 涡旋光发生器性能表征[82]
Figure 6. (a) Schematic illustration of the the on-axis broadband achromatic focusing optical vortex generator (BAFOV) generation with polarization-dependent functions[82]; (b) SEM images of the fabricated polarization-controlled BAFOV[82]; (c) Schematic illustration of the characterizing system for the measurement of fabricated metadevices[82]; (d) Performance of the BAFOV generator[82]
图 7 (a) Meta-VCSELs示意图[84];(b) 通过将各向异性超原子操作为纳米半波片,在庞加莱球上可实现的偏振态[84];(c) 矢量涡旋光束的产生[84]
Figure 7. (a) Schematic of Meta-VCSELs[84]; (b) The achievable polarization states on the Poincaré sphere in this example by operating the anisotropic meta-atoms as nano half-waveplates[84]; (c) Generations of vector vortex beams[84]
图 8 (a) 手性超构表面自旋解耦相位调控示意图[93];(b) 级联超构表面生成、调控高维庞加莱光束的概念图[93];(c) 级联超构表面阵列光学加密方案示意图[93]
Figure 8. (a) Schematic of phase control of spin decoupling on chiral metasurfaces[93]; (b) Conceptual illustration of generating multi-channel perfect HDPBs via cascaded chiral metasurfaces[93]; (c) Optical encryption demonstration based on cascaded metasurfaces[93]
图 9 (a) 基于介电超表面的偏振多路复用全息图示意图[98];(b) 观察全息图像实验装置图[98]; (c) 多通道矢量全息仿真及实验结果[98]
Figure 9. (a) Schematic illustrations of polarization multiplexed holograms based on dielectric metasurfaces[98]; (b) The experimental setup for the observation of the holographic images[98]; (c) Simulated and experimental results for the multichannel vectorial holography[98]
图 10 (a) 用于任意平行偏振态分析的矩阵光栅示意图和SEM图像[104];(b)任意Stokes偏振态测量装置示意图表示[104]; (c)所选阶次偏振测量对比度[104]
Figure 10. (a) Schematic image and SEM of matrix gratings for arbitrary parallel polarization analysis[104]; (b) Schematic image of the measurement of the arbitrary state Stokes polarization state[104]; (c) The polarization contrast of each order is shown[104]
图 11 (a) 近红外全Stokes探测装置示意图[106];(b) Z字型圆偏振滤波器示意图,可透过RCP(绿色)并阻挡LCP(蓝色)[106];(c)SEM图[106];(d) CP滤波器表征的测量装置示意图[106];(e) CP光的透射光谱和相应的圆二色性曲线(上),TM和TE偏振光的透射光谱和消光比曲线(下)[106]
Figure 11. (a) Schematic of setup for near-infrared full-Stokes detection[106]; (b) CP filter with the Z-shaped pattern, which transmits RCP light (green) and blocks LCP light (blue)[106]; (c) Scanning electron microscope (SEM) image[106]; (d) Schematic of the measurement setup for CP filter characterization[106]; (e) Transmission spectra and corresponding circular dichroism (CD) of CP light (top) and transmission spectra and extinction ratio of TM and TE polarized light (down)[106]
图 12 (a) 具有双工作波长的CMOS集成全Stokes偏振成像仪示意图[111];(b) 用于生成任意偏振态以进行完整斯托克斯偏振检测的定制实验装置示意图[111];(c) 垂直耦合双层光栅的透射率及线性消光比曲线(左),手性超表面在530~700 nm和480~530 nm处的透射率和消光比曲线(右)[111];(d) 所有超表面偏振滤光片阵列像素分别在特定偏振状态下红光和绿光垂直入射和斜入射时的偏振角、线偏振度和圆偏振度检测误差分布[111];(e) 全斯托克斯偏振CMOS成像传感器[111]
Figure 12. (a) Schematic of CMOS integrated full Stokes polarimetric imager with dual operation wavelength[111]; (b) A schematic of the customized experimental setup for generating arbitrary polarization states for full Stokes polarization detection[111]; (c) Measured transmission and LPER of fabricated vertically coupled double-layered gratings (VCDG) (left) and measured transmission and CPER of the chiral metasurface at 530~700 nm and 480~530 nm, respectively (right)[111]; (d) The angle of polarization (AOP), the degree of linear polarization (DOLP), and the degree of circular polarization (DOCP) detection error distributions of all metasurface polarization filter array pixels for the specific polarization state at normal incidence and oblique incidence of red color (left) and green color (right)[111]; (e) Image of full Stokes polarimetric CMOS imaging sensor[111]
-
[1] 王鑫. 基于多角度多光谱偏振遥感的地物目标识别研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021.
Wang X. Research on ground target recognition based on multi-angle and multispectral polarimetric remote sensing[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2021.
[2] 梁天全, 赵强, 孙晓兵, 等. 雾霾天气条件下偏振遥感图像复原研究[J]. 武汉大学学报·信息科学版, 2014, 39(2): 244−247. doi: 10.13203/j.whugis20120206
Liang T Q, Zhao Q, Sun X B, et al. Research on image restoration by polarized remotesensing through haze[J]. Geomatics Inf Sci Wuhan Univ, 2014, 39(2): 244−247. doi: 10.13203/j.whugis20120206
[3] Han P L, Liu F, Wei Y, et al. Optical correlation assists to enhance underwater polarization imaging performance[J]. Opt Lasers Eng, 2020, 134: 106256. doi: 10.1016/j.optlaseng.2020.106256
[4] Bai X Y, Liang Z D, Zhu Z M, et al. Polarization-based underwater geolocalization with deep learning[J]. eLight, 2023, 3(1): 15. doi: 10.1186/s43593-023-00050-6
[5] Smith M H. Interpreting Mueller matrix images of tissues[J]. Proc SPIE, 2001, 4257: 82−89. doi: 10.1117/12.434690
[6] Yaroslavsky A N, Feng X, Yu S H, et al. Dual-wavelength optical polarization imaging for detecting skin cancer margins[J]. J Invest Dermatol, 2020, 140 (10): 1994–2000. e1. https://doi.org/10.1016/j.jid.2020.03.947.
[7] Chenault D B, Vaden J P, Mitchell D A, et al. Infrared polarimetric sensing of oil on water[J]. Proc SPIE, 2016, 9999: 99990D. doi: 10.1117/12.2241866
[8] Andre Y, Laherrere J M, Bret-Dibat T, et al. Instrumental concept and performances of the POLDER instrument[J]. Proc SPIE, 1995, 2572: 79−90. doi: 10.1117/12.216932
[9] Gaiarin S, Perego A M, da Silva E P, et al. Dual-polarization nonlinear Fourier transform-based optical communication system[J]. Optica, 2018, 5(3): 263−270. doi: 10.1364/OPTICA.5.000263
[10] Gao S K, Mondal S B, Zhu N, et al. Image overlay solution based on threshold detection for a compact near infrared fluorescence goggle system[J]. J Biomed Opt, 2015, 20(1): 016018. doi: 10.1117/1.JBO.20.1.016018
[11] Lane C, Rode D, Rösgen T. Two-dimensional birefringence measurement technique using a polarization camera[J]. Appl Opt, 2021, 60(27): 8435−8444. doi: 10.1364/AO.433066
[12] Bouhy J, Dekoninck A, Voué M, et al. Analysis of accuracy and ambiguities in spatial measurements of birefringence in uniaxial anisotropic media[J]. Appl Opt, 2022, 61(27): 8081−8090. doi: 10.1364/AO.463657
[13] Zheng W H, Xing M X, Ren G, et al. Integration of a photonic crystal polarization beam splitter and waveguide bend[J]. Opt Express, 2009, 17(10): 8657−8668. doi: 10.1364/OE.17.008657
[14] Lu M F, Liao S M, Huang Y T. Ultracompact photonic crystal polarization beam splitter based on multimode interference[J]. Appl Opt, 2010, 49(4): 724−731. doi: 10.1364/AO.49.000724
[15] Chen S H, Wang C H, Yeh Y W, et al. Polarization filters with an autocloned symmetric structure[J]. Appl Opt, 2011, 50(9): C368−C372. doi: 10.1364/AO.50.00C368
[16] 朱久凯, 吴福全, 任树锋, 等. 亚波长光栅偏振器的研究现状与发展前景[J]. 激光杂志, 2012, 33(6): 1−3. doi: 10.3969/j.issn.0253-2743.2012.06.001
Zhu J K, Wu F Q, Ren S F, et al. Research and development prospects of the subwavelength grating polarizer[J]. Laser J, 2012, 33(6): 1−3. doi: 10.3969/j.issn.0253-2743.2012.06.001
[17] Hsiao H H, Chu C H, Tsai D P. Fundamentals and applications of metasurfaces[J]. Small Methods, 2017, 1(4): 1600064. doi: 10.1002/smtd.201600064
[18] Kim J, Rana A S, Kim Y, et al. Chiroptical metasurfaces: principles, classification, and applications[J]. Sensors, 2021, 21(13): 4381. doi: 10.3390/s21134381
[19] Tsilipakos O, Tasolamprou A C, Pitilakis A, et al. Toward intelligent metasurfaces: the progress from globally tunable metasurfaces to software‐defined metasurfaces with an embedded network of controllers[J]. Adv Opt Mater, 2020, 8(17): 2000783. doi: 10.1002/adom.202000783
[20] Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nat Nanotechnol, 2015, 10(11): 937−943. doi: 10.1038/nnano.2015.186
[21] Mueller J P B, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Phys Rev Lett, 2017, 118(11): 113901. doi: 10.1103/PhysRevLett.118.113901
[22] Park H, Crozier K B. Elliptical silicon nanowire photodetectors for polarization-resolved imaging[J]. Opt Express, 2015, 23(6): 7209−7216. doi: 10.1364/OE.23.007209
[23] Hu Y Q, Wang X D, Luo X H, et al. All-dielectric metasurfaces for polarization manipulation: principles and emerging applications[J]. Nanophotonics, 2020, 9(12): 3755−3780. doi: 10.1515/nanoph-2020-0220
[24] 李子园, 金伟其. 短波红外偏振成像技术的研究进展[J]. 应用光学, 2023, 44(3): 643−654. doi: 10.5768/JAO202344.0304003
Li Z Y, Jin W Q. Research progress of short-wavelength infrared polarization imaging technologies[J]. J Appl Opt, 2023, 44(3): 643−654. doi: 10.5768/JAO202344.0304003
[25] 林佼, 王大鹏, 司光远. 表面等离子激元超构表面的研究进展[J]. 光电工程, 2017, 44(3): 289−296. doi: 10.3969/j.issn.1003-501X.2017.03.003
Lin J, Wang D P, Si G Y. Recent progress on plasmonic metasurfaces[J]. Opto-Electron Eng, 2017, 44(3): 289−296. doi: 10.3969/j.issn.1003-501X.2017.03.003
[26] 刘博, 谢鑫, 甘雪涛, 等. 全金属超表面在电磁波相位调控中的应用及进展[J]. 光电工程, 2023, 50(9): 230119. doi: 10.12086/oee.2023.230119
Liu B, Xie X, Gan X T, et al. Applications and progress of all-metal metasurfaces in phase manipulation of electromagnetic waves[J]. Opto-Electron Eng, 2023, 50(9): 230119. doi: 10.12086/oee.2023.230119
[27] Hu J, Bandyopadhyay S, Liu Y H, et al. A review on metasurface: from principle to smart metadevices[J]. Front Phys, 2021, 8: 586087. doi: 10.3389/fphy.2020.586087
[28] 周俊焯, 郝佳, 余晓畅, 等. 面向偏振成像的超构表面研究进展[J]. 中国光学, 2023, 16(5): 973−995. doi: 10.37188/CO.2022-0234
Zhou J Z, Hao J, Yu X C, et al. Recent advances in metasurfaces for polarization imaging[J]. Chin Opt, 2023, 16(5): 973−995. doi: 10.37188/CO.2022-0234
[29] 柯岚, 章思梦, 李晨霞, 等. 超表面实现复杂矢量涡旋光束的研究进展[J]. 光电工程, 2023, 50(8): 230117. doi: 10.12086/oee.2023.230117
Ke L, Zhang S M, Li C X, et al. Research progress on hybrid vector beam implementation by metasurfaces[J]. Opto-Electron Eng, 2023, 50(8): 230117. doi: 10.12086/oee.2023.230117
[30] 贺敬文, 董涛, 张岩. 太赫兹波前调制超表面器件研究进展[J]. 红外与激光工程, 2020, 49(9): 20201033. doi: 10.3788/IRLA20201033
He J W, Dong T, Zhang Y. Development of metasurfaces for wavefront modulation in terahertz waveband[J]. Infrared Laser Eng, 2020, 49(9): 20201033. doi: 10.3788/IRLA20201033
[31] 万源庆, 刘威骏, 林若雨, 等. 基于超构表面的光谱成像及应用研究进展[J]. 光电工程, 2023, 50(8): 230139. doi: 10.12086/oee.2023.230139
Wan Y Q, Liu W J, Lin R Y, et al. Research progress and applications of spectral imaging based on metasurfaces[J]. Opto-Electron Eng, 2023, 50(8): 230139. doi: 10.12086/oee.2023.230139
[32] Gao H, Fan X H, Xiong W, et al. Recent advances in optical dynamic meta-holography[J]. Opto-Electron Adv, 2021, 4(11): 210030. doi: 10.29026/oea.2021.210030
[33] 郭忠义, 汪信洋, 李德奎, 等. 偏振信息传输理论及应用进展(特约)[J]. 红外与激光工程, 2020, 49(6): 20201013. doi: 10.3788/irla.3_2020-1014
Guo Z Y, Wang X Y, Li D K, et al. Advances on theory and application of polarization information propagation (Invited)[J]. Infrared Laser Eng, 2020, 49(6): 20201013. doi: 10.3788/irla.3_2020-1014
[34] 李智渊, 翟爱平, 冀莹泽, 等. 光学偏振成像技术的研究、应用与进展[J]. 红外与激光工程, 2023, 52(9): 20220808. doi: 10.3788/IRLA20220808
Li Z Y, Zhai A P, Ji Y Z, et al. Research, application and progress of optical polarization imaging technology[J]. Infrared Laser Eng, 2023, 52(9): 20220808. doi: 10.3788/IRLA20220808
[35] 刘雪婷, 翟焱望, 付时尧, 等. 湍流大气中高稳定性全庞加莱球光束模式选择(特邀)(英文)[J]. 红外与激光工程, 2021, 50 (9): 20210242. https://doi.org/10.3788/IRLA20210242.
Liu X T, Zhai Y W, Fu S Y, et al. Selection of full Poincaré beams with higher robustness in turbulent atmosphere (Invited)[J]. Infrared Laser Eng, 2021, 50 (9): 20210242. https://doi.org/10.3788/IRLA20210242.
[36] 张莉, 梁信洲, 林倩, 等. 杂化矢量光场的研究进展(特邀)[J]. 红外与激光工程, 2021, 50(9): 20210447. doi: 10.3788/IRLA20210447
Zhang L, Liang X Z, Lin Q, et al. Research progress of hybrid vector beams (Invited)[J]. Infrared Laser Eng, 2021, 50(9): 20210447. doi: 10.3788/IRLA20210447
[37] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333−337. doi: 10.1126/science.1210713
[38] Pors A, Albrektsen O, Radko I P, et al. Gap plasmon-based metasurfaces for total control of reflected light[J]. Sci Rep, 2013, 3(1): 2155. doi: 10.1038/srep02155
[39] Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190−1194. doi: 10.1126/science.aaf6644
[40] Huang Y W, Lee H W H, Sokhoyan R, et al. Gate-tunable conducting oxide metasurfaces[J]. Nano Lett, 2016, 16(9): 5319−5325. doi: 10.1021/acs.nanolett.6b00555
[41] Kim T T, Kim H, Kenney M, et al. Amplitude modulation of anomalously refracted terahertz waves with gated‐graphene metasurfaces[J]. Adv Opt Mater, 2018, 6(1): 1700507. doi: 10.1002/adom.201700507
[42] Li J, Li J T, Zhang Y T, et al. All-optical switchable terahertz spin-photonic devices based on vanadium dioxide integrated metasurfaces[J]. Opt Commun, 2020, 460: 124986. doi: 10.1016/j.optcom.2019.124986
[43] 罗小青, 黄文礼, 王彬旭, 等. 基于石墨烯超表面天线的太赫兹动态相位调控及波束扫描[J]. 集成技术, 2023, 12(4): 77−90. doi: 10.12146/j.issn.2095-3135.20221122001
Luo X Q, Huang W L, Wang B X, et al. Terahertz graphene metasurfaces antennas for dynamic phase modulation and beam steering[J]. J Integr Technol, 2023, 12(4): 77−90. doi: 10.12146/j.issn.2095-3135.20221122001
[44] Huang J J, Yin X N, Xu M, et al. Switchable coding metasurface for flexible manipulation of terahertz wave based on Dirac semimetal[J]. Results Phys, 2022, 33: 105204. doi: 10.1016/j.rinp.2022.105204
[45] Zheng L, Song Z T, Song W X, et al. Fabrication of stable multi-level resistance states in a Nb-doped Ge2Sb2Te5 device[J]. J Mater Chem C, 2023, 11(11): 3770−3777. doi: 10.1039/D3TC00233K
[46] 郁菲茏, 陈金, 赵增月, 等. 一种实现任意偏振调控中波红外消色差超表面的正向计算方法[J]. 红外与毫米波学报, 2022, 41(4): 792−798. doi: 10.11972/j.issn.1001-9014.2022.04.020
Yu F L, Chen J, Zhao Z Y, et al. A forward calculation method to quickly realize the achromatic metasurface for arbitrary polarization control[J]. J Infrared Millim Waves, 2022, 41(4): 792−798. doi: 10.11972/j.issn.1001-9014.2022.04.020
[47] Gao Y H, Tian Y, Du Q G, et al. High efficiency and high transmission asymmetric polarization converter with chiral metasurface in visible and near-infrared[J]. Chin Phys B, 2023, 32(7): 074201. doi: 10.1088/1674-1056/acb9eb
[48] 张飞, 蔡吉祥, 蒲明博, 等. 光学超构表面中的复合相位调控[J]. 物理, 2021, 50(5): 300−307. doi: 10.7693/wl20210503
Zhang F, Cai J X, Pu M B, et al. Composite-phase manipulation in optical metasurfaces[J]. Physics, 2021, 50(5): 300−307. doi: 10.7693/wl20210503
[49] Zhang R Z, Zhang R, Wang Z B, et al. Liquid refractive index sensor based on terahertz metamaterials[J]. Plasmonics, 2022, 17(2): 457−465. doi: 10.1007/s11468-021-01499-2
[50] Li X T, Li Y, Li C, et al. High color saturation and angle-insensitive ultrathin color filter based on effective medium theory[J]. Chin Opt Lett, 2023, 21(3): 033602. doi: 10.3788/COL202321.033602
[51] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proc Roy Soc A: Math, Phys Eng Sci, 1984, 392(1802): 45−57. doi: 10.1098/rspa.1984.0023
[52] Tal M, Haim D B, Ellenbogen T. Geometric phase opens new frontiers in nonlinear frequency conversion of light[J]. Front Phys, 2022, 17(1): 12302. doi: 10.1007/s11467-021-1123-4
[53] Li G X, Chen S M, Pholchai N, et al. Continuous control of the nonlinearity phase for harmonic generations[J]. Nat Mater, 2015, 14(6): 607−612. doi: 10.1038/nmat4267
[54] Wen D D, Yue F Y, Li G X, et al. Helicity multiplexed broadband metasurface holograms[J]. Nat Commun, 2015, 6(1): 8241. doi: 10.1038/ncomms9241
[55] Chen S M, Zeuner F, Weismann M, et al. Giant nonlinear optical activity of achiral origin in planar metasurfaces with quadratic and cubic nonlinearities[J]. Adv Mater, 2016, 28(15): 2992−2999. doi: 10.1002/adma.201505640
[56] Li G X, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces[J]. Nat Rev Mater, 2017, 2(5): 17010. doi: 10.1038/natrevmats.2017.10
[57] Sun Z Y, Yi Y F, Song T C, et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3[J]. Nature, 2019, 572(7770): 497−501. doi: 10.1038/s41586-019-1445-3
[58] Mao N B, Zhang G Q, Tang Y T, et al. Nonlinear vectorial holography with quad-atom metasurfaces[J]. Proc Natl Acad Sci USA, 2022, 119(22): e2204418119. doi: 10.1073/pnas.2204418119
[59] Xie X, Pu M B, Jin J J, et al. Generalized Pancharatnam-Berry phase in rotationally symmetric meta-atoms[J]. Phys Rev Lett, 2021, 126(18): 183902. doi: 10.1103/PhysRevLett.126.183902
[60] Luo X G. Principles of electromagnetic waves in metasurfaces[J]. Sci China Phys, Mech Astron, 2015, 58(9): 594201. doi: 10.1007/s11433-015-5688-1
[61] Wang M J, Huang Z J, Salut R, et al. Plasmonic helical nanoantenna as a converter between longitudinal fields and circularly polarized waves[J]. Nano Lett, 2021, 21(8): 3410−3417. doi: 10.1021/acs.nanolett.0c04948
[62] Shu J, Qiu C Y, Astley V, et al. High-contrast terahertz modulator based on extraordinary transmission through a ring aperture[J]. Opt Express, 2011, 19(27): 26666−26671. doi: 10.1364/OE.19.026666
[63] Tan Y J, Zhang L, Sun T X, et al. Polarization compensation method based on the wave plate group in phase mismatch for free-space quantum key distribution[J]. EPJ Quantum Technol, 2023, 10(1): 6. doi: 10.1140/epjqt/s40507-023-00163-4
[64] Lin S T, Le Q H, Chen S H, et al. Heterodyne polariscope for measuring the principal angle and phase retardation of stressed plastic substrates[J]. Measurement, 2021, 175: 109096. doi: 10.1016/j.measurement.2021.109096
[65] 陈强华, 周胜, 丁锦红, 等. 基于多步相移法和偏振干涉光学层析光路的三维温度场测量[J]. 光学学报, 2022, 42(7): 0712004. doi: 10.3788/AOS202242.0712004
Chen Q H, Zhou S, Ding J H, et al. Three-dimensional temperature field measurement based on multi-step phase shift method and polarization interference optical tomography optical path[J]. Acta Opt Sin, 2022, 42(7): 0712004. doi: 10.3788/AOS202242.0712004
[66] Han B W, Li S J, Cao X Y, et al. Dual-band transmissive metasurface with linear to dual-circular polarization conversion simultaneously[J]. AIP Adv, 2020, 10(12): 125025. doi: 10.1063/5.0034762
[67] Deng Y D, Wu C, Meng C, et al. Functional metasurface quarter-wave plates for simultaneous polarization conversion and beam steering[J]. ACS Nano, 2021, 15(11): 18532−18540. doi: 10.1021/acsnano.1c08597
[68] He H J, Tang S W, Zheng Z W, et al. Multifunctional all-dielectric metasurface quarter-wave plates for polarization conversion and wavefront shaping[J]. Opt Lett, 2022, 47(10): 2478−2481. doi: 10.1364/OL.456910
[69] Ahmad M, Liu J, Qureshi U U R. Wideband reflective half-and quarter-wave plate metasurface based on multi-plasmon resonances[J]. Opt Continuum, 2023, 2(5): 1242−1255. doi: 10.1364/OPTCON.487078
[70] Ding F, Chang B D, Wei Q S, et al. Versatile polarization generation and manipulation using dielectric metasurfaces[J]. Laser Photonics Rev, 2020, 14(11): 2000116. doi: 10.1002/lpor.202000116
[71] Gao S, Zhou C Y, Yue W J, et al. Efficient all-dielectric diatomic metasurface for linear polarization generation and 1-bit phase control[J]. ACS Appl Mater Interfaces, 2021, 13(12): 14497−14506. doi: 10.1021/acsami.1c00967
[72] Ren Y Z, Guo S H, Zhu W Q, et al. Full‐stokes polarimetry for visible light enabled by an all‐dielectric metasurface[J]. Adv Photonics Res, 2022, 3(7): 2100373. doi: 10.1002/adpr.202100373
[73] Rong Z H, Kuang C F, Fang Y, et al. Super-resolution microscopy based on fluorescence emission difference of cylindrical vector beams[J]. Opt Commun, 2015, 354: 71−78. doi: 10.1016/j.optcom.2015.05.057
[74] Wang X L, Chen J, Li Y N, et al. Optical orbital angular momentum from the curl of polarization[J]. Phys Rev Lett, 2010, 105(25): 253602. doi: 10.1103/PhysRevLett.105.253602
[75] Gu B, Hu Y Q, Zhang X B, et al. Angular momentum separation in focused fractional vector beams for optical manipulation[J]. Opt Express, 2021, 29(10): 14705−14719. doi: 10.1364/OE.423357
[76] Zhan Q W. Cylindrical vector beams: from mathematical concepts to applications[J]. Adv Opt Photonics, 2009, 1(1): 1−57. doi: 10.1364/AOP.1.000001
[77] Segawa S, Kozawa Y, Sato S. Demonstration of subtraction imaging in confocal microscopy with vector beams[J]. Opt Lett, 2014, 39(15): 4529−4532. doi: 10.1364/OL.39.004529
[78] Zhu L, Wang J. A review of multiple optical vortices generation: methods and applications[J]. Front Optoelectron, 2019, 12: 52−68. doi: 10.1007/s12200-019-0910-9
[79] Lavery M P J, Speirits F C, Barnett S M, et al. Detection of a spinning object using light’s orbital angular momentum[J]. Science, 2013, 341(6145): 537−540. doi: 10.1126/science.1239936
[80] Jin J J, Pu M B, Wang Y Q, et al. Multi‐channel vortex beam generation by simultaneous amplitude and phase modulation with two‐dimensional metamaterial[J]. Adv Mater Technol, 2017, 2(2): 1600201. doi: 10.1002/admt.201600201
[81] Guo Q H, Schlickriede C, Wang D Y, et al. Manipulation of vector beam polarization with geometric metasurfaces[J]. Opt Express, 2017, 25(13): 14300−14307. doi: 10.1364/OE.25.014300
[82] Ou K, Yu F L, Li G H, et al. Mid-infrared polarization-controlled broadband achromatic metadevice[J]. Sci Adv, 2020, 6(37): eabc0711. doi: 10.1126/sciadv.abc0711
[83] Kong Q, Gu M N, Zeng X Y, et al. Metasurface of combined semicircular rings with orthogonal slit pairs for generation of dual vector beams[J]. Nanomaterials, 2021, 11(7): 1718. doi: 10.3390/nano11071718
[84] Fu P, Ni P N, Wu B, et al. Metasurface enabled on-chip generation and manipulation of vector beams from vertical cavity surface-emitting lasers[J]. Adv Mater, 2023, 35(12): 2204286. doi: 10.1002/adma.202204286
[85] Shafqat M D, Mahmood N, Akbar J, et al. Broadband multifunctional metasurfaces for concentric perfect vortex beam generation via trigonometric functions[J]. Opt Mater Express, 2024, 14(1): 125−138. doi: 10.1364/OME.510015
[86] 魏睿, 包燕军. 基于超构表面的多维光信息加密[J]. 中国激光, 2023, 50(18): 1813004. doi: 10.3788/CJL230689
Wei R, Bao Y J. Metasurface-based multidimensional optical information encryption[J]. Chin J Lasers, 2023, 50(18): 1813004. doi: 10.3788/CJL230689
[87] Xiong B, Liu Y, Xu Y H, et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise[J]. Science, 2023, 379(6629): 294−299. doi: 10.1126/science.ade5140
[88] Deng J, Li Z L, Li J X, et al. Metasurface-assisted optical encryption carrying camouflaged information[J]. Adv Opt Mater, 2022, 10(16): 2200949. doi: 10.1002/adom.202200949
[89] Liu S L, Wang X H, Ni J C, et al. Optical encryption in the photonic orbital angular momentum dimension via direct-laser-writing 3D chiral metahelices[J]. Nano Lett, 2023, 23(6): 2304−2311. doi: 10.1021/acs.nanolett.2c04860
[90] Yang H, He P, Ou K, et al. Angular momentum holography via a minimalist metasurface for optical nested encryption[J]. Light Sci Appl, 2023, 12(1): 79. doi: 10.1038/S41377-023-01125-2
[91] Ren H R, Fang X Y, Jang J, et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space[J]. Nat Nanotechnol, 2020, 15(11): 948−955. doi: 10.1038/s41565-020-0768-4
[92] Guo X Y, Li P, Zhong J Z, et al. Stokes meta-hologram toward optical cryptography[J]. Nat Commun, 2022, 13(1): 6687. doi: 10.1038/s41467-022-34542-9
[93] Ji J T, Chen C, Sun J C, et al. High-dimensional Poincaré beams generated through cascaded metasurfaces for high-security optical encryption[J]. PhotoniX, 2024, 5(1): 13. doi: 10.1186/s43074-024-00125-8
[94] Kakichashvili S D. Method for phase polarization recording of holograms[J]. Sov J Quantum Electron, 1974, 4(6): 795−798. doi: 10.1070/QE1974v004n06ABEH009334
[95] Mu Y H, Zheng M Y, Qi J R, et al. A large field-of-view metasurface for complex-amplitude hologram breaking numerical aperture limitation[J]. Nanophotonics, 2020, 9(16): 4749−4759. doi: 10.1515/nanoph-2020-0448
[96] Zhao R Z, Huang L L, Wang Y T. Recent advances in multi-dimensional metasurfaces holographic technologies[J]. PhotoniX, 2020, 1(1): 20. doi: 10.1186/s43074-020-00020-y
[97] Zhao R Z, Sain B, Wei Q S, et al. Multichannel vectorial holographic display and encryption[J]. Light Sci Appl, 2018, 7(1): 95. doi: 10.1038/s41377-018-0091-0
[98] Song Q, Khadir S, Vézian S, et al. Bandwidth-unlimited polarization-maintaining metasurfaces[J]. Sci Adv, 2021, 7(5): eabe1112. doi: 10.1126/sciadv.abe1112
[99] Zhu L, Wei J X, Dong L, et al. Four-channel meta-hologram enabled by a frequency-multiplexed mono-layered geometric phase metasurface[J]. Opt Express, 2024, 32(3): 4553−4563. doi: 10.1364/OE.513920
[100] Tyo J S, Goldstein D L, Chenault D B, et al. Review of passive imaging polarimetry for remote sensing applications[J]. Appl Opt, 2006, 45(22): 5453−5469. doi: 10.1364/AO.45.005453
[101] Andreou A G, Kalayjian Z K. Polarization imaging: principles and integrated polarimeters[J]. IEEE Sens J, 2002, 2(6): 566−576. doi: 10.1109/JSEN.2003.807946
[102] Nordin G P, Meier J T, Deguzman P C, et al. Diffractive optical element for Stokes vector measurement with a focal plane array[J]. Proc SPIE, 1999, 3754: 169−177. doi: 10.1117/12.366355
[103] 杨威, 王晓曼, 石林, 等. 基于Stokes矢量的双相机偏振成像系统[J]. 电光与控制, 2021, 28(6): 72−75,89. doi: 10.3969/j.issn.1671-637X.2021.06.016
Yang W, Wang X M, Shi L, et al. A dual-camera polarization imaging system based on Stokes vector[J]. Electron Opt Control, 2021, 28(6): 72−75,89. doi: 10.3969/j.issn.1671-637X.2021.06.016
[104] Rubin N A, D’Aversa G, Chevalier P, et al. Matrix Fourier optics enables a compact full-Stokes polarization camera[J]. Science, 2019, 365(6448): eaax1839. doi: 10.1126/science.aax1839
[105] Yan C, Li X, Pu M B, et al. Midinfrared real-time polarization imaging with all-dielectric metasurfaces[J]. Appl Phys Lett, 2019, 114(16): 161904. doi: 10.1063/1.5091475
[106] Zhang C, Hu J P, Dong Y G, et al. High efficiency all-dielectric pixelated metasurface for near-infrared full-Stokes polarization detection[J]. Photonics Res, 2021, 9(4): 583−589. doi: 10.1364/PRJ.415342
[107] Cheng B, Song G F. Full-Stokes polarization photodetector based on the hexagonal lattice chiral metasurface[J]. Opt Express, 2023, 31(19): 30993−31004. doi: 10.1364/OE.497898
[108] Park H S, Park J, Son J, et al. A general recipe for nondispersive optical activity in bilayer chiral metamaterials[J]. Adv Opt Mater, 2019, 7(19): 1801729. doi: 10.1002/adom.201801729
[109] Roberts N W, Chiou T H, Marshall N J, et al. A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region[J]. Nat Photonics, 2009, 3(11): 641−644. doi: 10.1038/nphoton.2009.189
[110] Basiri A, Chen X H, Bai J, et al. Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements[J]. Light Sci Appl, 2019, 8(1): 78. doi: 10.1038/s41377-019-0184-4
[111] Zuo, J, Bai, J, Choi S et al. Chip-integrated metasurface full-Stokes polarimetric imaging sensor[J]. Light Sci Appl, 2023, 218(12). doi: 10.1038/s41377-023-01260-w
[112] Vieu C, Carcenac F, Pépin A, et al. Electron beam lithography: resolution limits and applications[J]. Appl Surf Sci, 2000, 164(1-4): 111−117. doi: 10.1016/S0169-4332(00)00352-4
[113] Qin N, Qian Z G, Zhou C Z, et al. 3D electron-beam writing at sub-15 nm resolution using spider silk as a resist[J]. Nat Commun, 2021, 12(1): 5133. doi: 10.1038/s41467-021-25470-1
[114] Zhu C X, Ekinci H, Pan A X, et al. Electron beam lithography on nonplanar and irregular surfaces[J]. Microsyst Nanoeng, 2024, 10(1): 52. doi: 10.1038/s41378-024-00682-9
[115] Cakirlar C, Galderisi G, Beyer C, et al. Challenges in electron beam lithography of silicon nanostructures[C]//Proceedings of the IEEE 22nd International Conference on Nanotechnology (NANO), 2022: 207–210. https://doi.org/10.1109/NANO54668.2022.9928629.
[116] Szafraniak B, Fuśnik Ł, Xu J, et al. Semiconducting metal oxides: SrTiO3, BaTiO3 and BaSrTiO3 in gas-sensing applications: a review[J]. Coatings, 2021, 11(2): 185. doi: 10.3390/coatings11020185
[117] Keskinbora K, Robisch A L, Mayer M, et al. Recent advances in use of atomic layer deposition and focused ion beams for fabrication of Fresnel zone plates for hard x-rays[J]. Proc SPIE, 2013, 8851: 885119. doi: 10.1117/12.2027251
[118] Mayer M, Keskinbora K, Grévent C, et al. Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling[J]. J Synchrotron Radiat, 2013, 20(3): 433−440. doi: 10.1107/S0909049513006602
[119] Tseng M L, Lin Z H, Kuo H Y, et al. Stress-induced 3D chiral fractal metasurface for enhanced and stabilized broadband near-field optical chirality[J]. Adv Opt Mater, 2019, 7(15): 1900617. doi: 10.1002/adom.201900617
[120] 许可, 王星儿, 范旭浩, 等. 超表面全息术: 从概念到实现[J]. 光电工程, 2022, 49(10): 220183. doi: 10.12086/oee.2022.220183
Xu K, Wang X E, Fan X H, et al. Meta-holography: from concept to realization[J]. Opto-Electron Eng, 2022, 49(10): 220183. doi: 10.12086/oee.2022.220183
[121] 周伟平, 白石, 谢祖武, 等. 激光直写制备金属与碳材料微纳结构与器件研究进展[J]. 光电工程, 2022, 49(1): 210330. doi: 10.12086/oee.2022.210330
Zhou W P, Bai S, Xie Z W, et al. Research progress of laser direct writing fabrication of metal and carbon micro/nano structures and devices[J]. Opto-Electron Eng, 2022, 49(1): 210330. doi: 10.12086/oee.2022.210330
[122] Berzinš J, Indrišiūnas S, Van Erve K, et al. Direct and high-throughput fabrication of mie-resonant metasurfaces via single-pulse laser interference[J]. ACS Nano, 2020, 14(5): 6138−6149. doi: 10.1021/acsnano.0c01993
[123] Min S Y, Li S J, Zhu Z Y, et al. Ultrasensitive molecular detection by imaging of centimeter-scale metasurfaces with a deterministic gradient geometry[J]. Adv Mater, 2021, 33(29): 2100270. doi: 10.1002/adma.202100270
[124] Park J S, Zhang S Y, She A L, et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography[J]. Nano Lett, 2019, 19(12): 8673−8682. doi: 10.1021/acs.nanolett.9b03333
[125] Zhang L D, Chang S Y, Chen X, et al. High-efficiency, 80 mm aperture metalens telescope[J]. Nano Lett, 2023, 23(1): 51−57. doi: 10.1021/acs.nanolett.2c03561
[126] Hu T, Zhong Q Z, Li N X, et al. CMOS-compatible a-Si metalenses on a 12-inch glass wafer for fingerprint imaging[J]. Nanophotonics, 2020, 9(4): 823−830. doi: 10.1515/nanoph-2019-0470
[127] Yoon G, Kim K, Kim S U, et al. Printable nanocomposite metalens for high-contrast near-infrared imaging[J]. ACS Nano, 2021, 15(1): 698−706. doi: 10.1021/acsnano.0c06968
[128] Yoon G, Kim K, Huh D, et al. Single-step manufacturing of hierarchical dielectric metalens in the visible[J]. Nat Commun, 2020, 11(1): 2268. doi: 10.1038/s41467-020-16136-5
[129] Chen M K, Zhang J C, Leung C W, et al. Chiral-magic angle of nanoimprint meta-device[J]. Nanophotonics, 2023, 12(13): 2479−2490. doi: 10.1515/nanoph-2022-0733
[130] Hao Z B, He X C, Li H D, et al. Vertically aligned and ordered arrays of 2D MCo2S4@metal with ultrafast ion/electron transport for thickness-independent pseudocapacitive energy storage[J]. ACS Nano, 2020, 14(10): 12719−12731. doi: 10.1021/acsnano.0c02973
[131] Xia D F, Ye L, Guo X, et al. A dual-curable transfer layer for adhesion enhancement of a multilayer UV-curable nanoimprint resist system[J]. Appl Phys A, 2012, 108(1): 1−6. doi: 10.1007/s00339-012-6911-9
[132] Hu X, Yang T, Gu R H, et al. A degradable polycyclic cross-linker for UV-curing nanoimprint lithography[J]. J Mater Chem C, 2014, 2(10): 1836−1843. doi: 10.1039/c3tc32048k
[133] Qiu S, Ji J W, Sun W, et al. Recent advances in surface manipulation using micro-contact printing for biomedical applications[J]. Smart Mater Med, 2021, 2: 65−73. doi: 10.1016/j.smaim.2020.12.002
[134] Wu C T, Utsunomiya T, Ichii T, et al. Microstructured SiO x/COP stamps for patterning TiO2 on polymer substrates via microcontact printing[J]. Langmuir, 2020, 36(37): 10933−10940. doi: 10.1021/acs.langmuir.0c01558
[135] Zhang Y Y, Jiao Y L, Li C Z, et al. Bioinspired micro/nanostructured surfaces prepared by femtosecond laser direct writing for multi-functional applications[J]. Int J Extrem Manuf, 2020, 2(3): 032002. doi: 10.1088/2631-7990/ab95f6
[136] 杨顺华, 丁晨良, 朱大钊, 等. 基于飞秒激光的高速双光子刻写技术[J]. 光电工程, 2023, 50(3): 220133. doi: 10.12086/oee.2023.220133
Yang S H, Ding C L, Zhu D Z, et al. High-speed two-photon lithography based on femtosecond laser[J]. Opto-Electron Eng, 2023, 50(3): 220133. doi: 10.12086/oee.2023.220133
[137] Hulteen J C, Van Duyne R P. Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces[J]. J Vac Sci Technol A, 1995, 13(3): 1553−1558. doi: 10.1116/1.579726
[138] Gottlieb S, Lorenzoni M, Evangelio L, et al. Thermal scanning probe lithography for the directed self-assembly of block copolymers[J]. Nanotechnology, 2017, 28(17): 175301. doi: 10.1088/1361-6528/aa673c
[139] Jakšić Z, Vasiljević-Radović D, Maksimović M, et al. Nanofabrication of negative refractive index metasurfaces[J]. Microelectron Eng, 2006, 83(4-9): 1786−1791. doi: 10.1016/j.mee.2006.01.197
[140] Xu K, Chen J B. High-resolution scanning probe lithography technology: a review[J]. Appl Nanosci, 2020, 10(4): 1013−1022. doi: 10.1007/s13204-019-01229-5
[141] Fan P F, Gao J, Mao H, et al. Scanning probe lithography: state-of-the-art and future perspectives[J]. Micromachines, 2022, 13(2): 228. doi: 10.3390/mi13020228
[142] Garcia R, Knoll A W, Riedo E. Advanced scanning probe lithography[J]. Nat Nanotechnol, 2014, 9(8): 577−587. doi: 10.1038/nnano.2014.157
[143] Zheng X R, Calò A, Albisetti E, et al. Patterning metal contacts on monolayer MoS2 with vanishing Schottky barriers using thermal nanolithography[J]. Nat Electron, 2019, 2(1): 17−25. doi: 10.1038/s41928-018-0191-0
[144] Yuan D D, Li J, Huang J X, et al. Large-scale laser nanopatterning of multiband tunable mid-infrared metasurface absorber[J]. Adv Opt Mater, 2022, 10(22): 2200939. doi: 10.1002/adom.202200939
[145] Huang L Y, Xu K, Yuan D D, et al. Sub-wavelength patterned pulse laser lithography for efficient fabrication of large-area metasurfaces[J]. Nat Commun, 2022, 13(1): 5823. doi: 10.1038/s41467-022-33644-8
[146] Ji W Y, Chang J, Xu H X, et al. Recent advances in metasurface design and quantum optics applications with machine learning, physics-informed neural networks, and topology optimization methods[J]. Light Sci Appl, 2023, 12(1): 169. doi: 10.1038/s41377-023-01218-y
[147] Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[C]//Proceedings of the 4th International Conference on Learning Representations, 2016.
[148] An S S, Fowler C, Zheng B W, et al. A deep learning approach for objective-driven all-dielectric metasurface design[J]. ACS Photonics, 2019, 6(12): 3196−3207. doi: 10.1021/acsphotonics.9b00966
[149] Liu D J, Tan Y X, Khoram E, et al. Training deep neural networks for the inverse design of nanophotonic structures[J]. Acs Photonics, 2018, 5(4): 1365−1369. doi: 10.1021/acsphotonics.7b01377
[150] An S S, Zheng B W, Shalaginov M Y, et al. A freeform dielectric metasurface modeling approach based on deep neural networks[Z]. arXiv: 2001.00121, 2020. https://doi.org/10.48550/arXiv.2001.00121.
[151] Mall A, Patil A, Tamboli D, et al. Fast design of plasmonic metasurfaces enabled by deep learning[J]. J Phys D Appl Phys, 2020, 53(49): 49LT01. doi: 10.1088/1361-6463/abb33c
[152] Zhu D Y, Liu Z C, Raju L, et al. Building multifunctional metasystems via algorithmic construction[J]. ACS Nano, 2021, 15(2): 2318−2326. doi: 10.1021/acsnano.0c09424
[153] Zhu T F, Guo C, Huang J Y, et al. Topological optical differentiator[J]. Nat Commun, 2021, 12(1): 680. doi: 10.1038/s41467-021-20972-4
[154] Long O Y, Guo C, Wang H W, et al. Isotropic topological second-order spatial differentiator operating in transmission mode[J]. Opt Lett, 2021, 46(13): 3247−3250. doi: 10.1364/OL.430699
[155] 冯睿, 田耀恺, 刘亚龙, 等. 拓扑优化超表面的偏振复用光学微分运算[J]. 光电工程, 2023, 50(9): 230172. doi: 10.12086/oee.2023.230172
Feng R, Tian Y K, Liu Y L, et al. Polarization-multiplexed optical differentiation using topological metasurfaces[J]. Opto-Electron Eng, 2023, 50(9): 230172. doi: 10.12086/oee.2023.230172
[156] 段锦, 张昊, 宋靖远, 等. 深度学习偏振图像融合研究现状[J]. 红外技术, 2024, 46(2): 119−128.
Duan J, Zhang H, Song J Y, et al. Review of polarization image fusion based on deep learning[J]. Infrared Technol, 2024, 46(2): 119−128.
[157] 赵峰, 程喜萌, 冯斌, 等. 分焦平面偏振图像插值算法的比较研究[J]. 激光与光电子学进展, 2020, 57(16): 161014. doi: 10.3788/LOP57.161014
Zhao F, Cheng X M, Feng B, et al. Comparison research of interpolation algorithms for division of focal plane polarization image[J]. Laser Optoelectron Prog, 2020, 57(16): 161014. doi: 10.3788/LOP57.161014
[158] 李英超, 杨帅, 付强, 等. 基于深度学习的偏振图像局部特征提取算法研究(特邀)[J]. 光电技术应用, 2022, 37(5): 62−69. doi: 10.3969/j.issn.1673-1255.2022.05.008
Li Y C, Yang S, Fu Q, et al. Research on local feature extraction algorithm for polarized images based on deep learning (Invited)[J]. Electro-Opt Technol Appl, 2022, 37(5): 62−69. doi: 10.3969/j.issn.1673-1255.2022.05.008
[159] 董洋, 张冯頔, 姚悦, 等. 基于全偏振成像的数字病理方法[J]. 中国科学: 生命科学, 2023, 53(4): 480−504. doi: 10.1360/SSV-2021-0412
Dong Y, Zhang F D, Yao Y, et al. Mueller microscopy for digital pathology[J]. Sci Sin Vitae, 2023, 53(4): 480−504. doi: 10.1360/SSV-2021-0412