1.2 m高轻量化率主反射镜镜坯结构设计

袁健,张雷,姜启福,等. 1.2 m高轻量化率主反射镜镜坯结构设计[J]. 光电工程,2023,50(4): 220225. doi: 10.12086/oee.2023.220225
引用本文: 袁健,张雷,姜启福,等. 1.2 m高轻量化率主反射镜镜坯结构设计[J]. 光电工程,2023,50(4): 220225. doi: 10.12086/oee.2023.220225
Yuan J, Zhang L, Jiang Q F, et al. Structure design of 1.2 m high lightweight primary mirror blank[J]. Opto-Electron Eng, 2023, 50(4): 220225. doi: 10.12086/oee.2023.220225
Citation: Yuan J, Zhang L, Jiang Q F, et al. Structure design of 1.2 m high lightweight primary mirror blank[J]. Opto-Electron Eng, 2023, 50(4): 220225. doi: 10.12086/oee.2023.220225

1.2 m高轻量化率主反射镜镜坯结构设计

  • 基金项目:
    吉林省科技发展计划项目(20210509052RQ)
详细信息
    作者简介:
    *通讯作者: 张雷,18686344285@163.com
  • 中图分类号: V447.1

Structure design of 1.2 m high lightweight primary mirror blank

  • Fund Project: Projects of Science and Technology Development Plan of Jilin Province (20210509052RQ)
More Information
  • 如何进一步提升高性能米级空间反射镜轻量化率是大口径光机结构研制领域内的核心问题之一。本文为某高分辨率空间相机研制了通光口径Φ1200 mm的主反射镜,实现了面密度40 kg/m2的设计目标。碳化硅镜体采用凝胶注模成型及反应烧结工艺制备,将光轴水平状态作为检测状态以简化支撑结构,在半封闭式镜体内使用了主副筋交叉布置、立壁增加减重孔等轻量化手段,用分布式基准面取代传统基准设置,将基准面加工面积减少80%以上、提高了加工效率。通过参数化建模与集成优化,确定了镜体最优结构参数组合,最终镜体设计重量为46.9 kg。光轴水平时主镜自重变形RMS值仅2.87 nm,镜体自由基频为602 Hz,主镜具有良好的动、静力学特性。镜坯经机械加工后实测重量为51.3 kg、超重约9.4%,镜面厚度不均匀性小于1 mm,当前镜面已抛光至面形精度RMS λ/8 (λ=632.8 nm),未见印透效应。

  • Overview: How to further improve the lightweight ratio of high-performance meter-level space mirrors is one of the core issues in the field of large aperture optomechanical structure design. In this paper, a primary mirror blank with a clear aperture of Φ1200 mm was developed for a high-resolution space camera, which achieves the goal of designing area density below 40 kg/m2. The SiC mirror blank was manufactured by gel injection molding and reaction sintering process, with the classical back three-point support scheme together with the testing state of the optical axis being horizontally adopted to simplify the supporting structure. Novel lightweight measures such as an alternate arrangement of main and auxiliary stiffeners and the addition of lightweight holes to vertical walls were used inside the semi-closed blank, which further improves the lightweight ratio of space mirrors with the sandwich structure. Distributed datums were proposed to replace the traditional datum setting, which reduces the machining area of datums by more than 80% and improves machining efficiency significantly. A robot arm is used for polishing in optical processing, and the local surface deformation is 47 nm in PV value under the typical polishing pressure of 1.77 kPa, with the mirror surface of 4 mm thick and the spacing between stiffener ribs of 81 mm. A parametric model of the mirror blank was built with shell elements, which contains ten variables including stiffener thickness and blank height, and integrated optimization was carried out so as to determine the optimal combination of structural parameters, using the multi-island genetic algorithm. The final design weight of the mirror blank is 46.9 kg, with corresponding area density of 38.8 kg/m2. The RMS value of self-weight deformation of the mirror blank is only 2.87 nm with its optical axis being horizontal, and the free fundamental frequency is 602 Hz, indicating that the mirror blank has good dynamic and static characteristics, which satisfies the design requirements of space cameras. After machining, the measured weight of the mirror blank is 51.3 kg, about 9.4% overweight than the design, and the facesheet is about 1 mm thicker, mainly caused by the inhomogeneity of the molding process. During the centroid position test of the primary mirror blank, the deviation between the measured and theoretical centroid position is about 3.7 mm in the axial direction and 2.0 mm in the radial direction, which can be compensated through adjustment of the supporting structure and has limited influence on the optical performance of mirror assembly. At present, the primary mirror blank has already been polished to RMS λ/8 (λ=632.8 nm) of surface shape accuracy, with no obvious print-through effect observed. The lightweight structure scheme and optimization method of the mirror blank proposed in this paper can provide an important reference for the design of similar space mirrors with the characteristics of large aperture and low areal density.

  • 加载中
  • 图 1  同轴三反相机光路

    Figure 1.  Optical path of the coaxial three mirror camera

    图 2  主镜结构形式

    Figure 2.  Structure form of the primary mirror

    图 3  镜体分布式基准布置

    Figure 3.  Layout of distributed datums on the mirror blank

    图 4  更高轻量化率镜体减重措施

    Figure 4.  Measures for th higher lightweight mirror

    图 5  主镜抛光中的印透效应

    Figure 5.  Print-through effective of the primary mirror under polishing

    图 6  主镜镜坯参数化模型

    Figure 6.  Parametric modeling of the primary mirror blank

    图 7  主镜镜坯优化迭代历程

    Figure 7.  Iteration of optimization process for the primary mirror blank

    图 8  主镜镜坯力学特性。(a) 重力工况变形云图;(b) 反射镜1阶自由模态振型

    Figure 8.  Mechanical properties of the primary mirror blank. (a) Gravitational deformation nephogram; (b) The 1st order free vibration mode

    图 9  主镜镜坯制备结果。(a)镜坯实物;(b)质心位置测试

    Figure 9.  Manufacturing results of the primary mirror blank. (a) Mirror blank; (b) Centroid position test

    图 10  主镜光学加工。(a) 机械臂抛光;(b) 干涉图

    Figure 10.  Optical processing of the primary mirror. (a) Polishing with the robot arm; (b) Interferogram

    表 1  主要大口径空间反射镜材料物理属性

    Table 1.  Physical properties of main materials for the large aperture mirror

    PropertyRB-SiCBerylliumULEZerodur
    Density ρ/(kg·m−3)3050185022102530
    Elastic modulus E/GPa3402876791
    Poisson ratio μ0.20.080.170.24
    Thermal conductivity λ/(W·K−1·m−1)1552161.311.64
    Thermal expansion coefficient α/(10−6·K−1)2.5011.40.030.05
    Specific stiffness E/ρ111.515530.336
    Thermal stability λ/α6218.943.732.8
    Comprehensive performance (E/ρ)·(λ/α)6913293913241180
    下载: 导出CSV

    表 2  参数取值范围及优化结果(单位:mm)

    Table 2.  Parameter ranges and optimization results (unit: mm)

    No.ParameterLimitsOriginalOptimalUltimate
    1Face thickness/T1[4, 8]64.2824
    2Bottom thickness/T2[3, 6]54.4194
    3Cone thickness/C1[6, 12]108.15410
    4Main-stiffener thickness/R1[3, 6]54.1434
    5Sub-stiffener thickness/R2[3, 6]53.2463
    6Outer wall thickness/O1[3, 6]53.4403
    7Central window thickness/O2[3, 6]53.2223
    8Peripheral thickness/R3[3, 6]53.2033
    9Blank height/H1[125, 150]130146.660142.5
    10Trimmed height/H2[100, 125]100115.325125
    下载: 导出CSV
  • [1]

    张超杰, 习兴华, 王永宪, 等. 空间遥感相机大口径反射镜结构优化设计[J]. 红外与激光工程, 2020, 49(2): 0214002. doi: 10.3788/IRLA202049.0214002

    Zhang C J, Xi X H, Wang Y X, et al. Structural optimization design of large-aperture mirror for space remote sensing camera[J]. Infrared Laser Eng, 2020, 49(2): 0214002. doi: 10.3788/IRLA202049.0214002

    [2]

    张博文, 王小勇, 赵野, 等. 天基大口径反射镜支撑技术的发展[J]. 红外与激光工程, 2018, 47(11): 1113001. doi: 10.3788/IRLA201847.1113001

    Zhang B W, Wang X Y, Zhao Y, et al. Progress of support technique of space-based large aperture mirror[J]. Infrared Laser Eng, 2018, 47(11): 1113001. doi: 10.3788/IRLA201847.1113001

    [3]

    胡瑞, 陈志强, 张媛媛, 等. Ф1.05 m轻量化反射镜设计与制造[J]. 光电工程, 2020, 47(10): 200317. doi: 10.12086/oee.2020.200317

    Hu R, Chen Z Q, Zhang Y Y, et al. Design and manufacture of Ф1.05 m lightweight mirror[J]. Opto-Electron Eng, 2020, 47(10): 200317. doi: 10.12086/oee.2020.200317

    [4]

    袁健, 任建岳. 碳化硅反射镜轻量化结构的改进与优化[J]. 光子学报, 2015, 44(8): 0812004. doi: 10.3788/gzxb20154408.0812004

    Yuan J, Ren J Y. Improvement and optimization of lightweight structure for SiC reflective mirror[J]. Acta Photonica Sinica, 2015, 44(8): 0812004. doi: 10.3788/gzxb20154408.0812004

    [5]

    刘贝. 空间大口径反射镜组件优化设计及可调节支撑技术研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2019: 7–14. https://doi.org/10.27605/d.cnki.gkxgs.2019.000061.

    Liu B. Research on optimization design for large-aperture mirror assembly and adjustable support technique[D]. Xi’an: Xi’an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences, 2019: 7–14. https://doi.org/10.27605/d.cnki.gkxgs.2019.000061.

    [6]

    Lightsey P A, Atkinson C, Clampin M, et al. James Webb Space Telescope: large deployable cryogenic telescope in space[J]. Opt Eng, 2012, 51(1): 011003. doi: 10.1117/1.OE.51.1.011003

    [7]

    Toulemont Y, Passvogel T, Pilbratt G, et al. The 3, 5m all SiC Telescope for Herschel[J]. Proc SPIE, 2004, 10568: 105682F. doi: 10.1117/12.2500110

    [8]

    Lampton M L, Sholl M J, Krim M H, et al. SNAP Telescope: an update[J]. Proc SPIE, 2004, 5166: 113−123. doi: 10.1117/12.502333

    [9]

    王克军, 董吉洪, 宣明, 等. 空间遥感器大口径反射镜的复合支撑结构[J]. 光学 精密工程, 2016, 24(7): 1719−1730. doi: 10.3788/OPE.20162407.1719

    Wang K J, Dong J H, Xuan M, et al. Compound support structure for large aperture mirror of space remote sensor[J]. Opt Precis Eng, 2016, 24(7): 1719−1730. doi: 10.3788/OPE.20162407.1719

    [10]

    Wang K J, Dong J H, Zhao Y, et al. Research on high performance support technology of space-based large aperture mirror[J]. Optik, 2021, 226: 165929. doi: 10.1016/j.ijleo.2020.165929

    [11]

    刘岩, 张辉, 刘雷敏, 等. 大尺寸拼接式碳化硅反射镜的研制及环境模拟试验[J]. 光电工程, 2020, 47(8): 200088. doi: 10.12086/oee.2020.200088

    Liu Y, Zhang H, Liu L M, et al. Preparation and environmental simulation tests of large-size silicon carbide brazed reflection mirrors[J]. Opto-Electron Eng, 2020, 47(8): 200088. doi: 10.12086/oee.2020.200088

    [12]

    王克军, 董吉洪. 空间遥感器Ф2 m量级大口径SiC反射镜镜坯结构设计[J]. 红外与激光工程, 2017, 46(7): 0718005. doi: 10.3788/IRLA201746.0718005

    Wang K J, Dong J H. Structural design of Ф2m-level large-diameter SiC reflector used in space remote sensor[J]. Infrared Laser Eng, 2017, 46(7): 0718005. doi: 10.3788/IRLA201746.0718005

    [13]

    郭疆, 朱磊, 赵继, 等. 大口径空间反射镜大容差支撑结构设计与优化[J]. 光学 精密工程, 2019, 27(5): 1138−1147. doi: 10.3788/OPE.20192705.1138

    Guo J, Zhu L, Zhao J, et al. Design and optimize of high tolerance support structure for large aperture space mirror[J]. Opt Precis Eng, 2019, 27(5): 1138−1147. doi: 10.3788/OPE.20192705.1138

    [14]

    李劲东. 卫星遥感技术(上册)[M]. 北京: 北京理工大学出版社, 2018: 77–79.

    Li J D. Satellite Remote Sensing Technology[M]. Beijing: Beijing Institute of Technology Press, 2018: 77–79.

    [15]

    王升, 丛杉珊, 薛志鹏, 等. 一体式碳纤维次镜支撑结构设计[J]. 光学学报, 2022, 42(5): 0522001. doi: 10.3788/AOS202242.0522001

    Wang S, Cong S S, Xue Z P, et al. Design of integrated carbon fiber secondary mirror supporting structure[J]. Acta Opt Sin, 2022, 42(5): 0522001. doi: 10.3788/AOS202242.0522001

    [16]

    张景贤, 江东亮, 林庆玲, 等. 通过凝胶注模成型和无压烧结制备碳化硅陶瓷[J]. 硅酸盐学报, 2012, 40(8): 1154−1157. doi: 10.14062/j.issn.0454-5648.2012.08.016

    Zhang J X, Jiang D L, Lin Q L, et al. Preparation of silicon carbide ceramics by aqueous gelcasting and pressureless sintering[J]. J Chin Ceram Soc, 2012, 40(8): 1154−1157. doi: 10.14062/j.issn.0454-5648.2012.08.016

    [17]

    杨金华, 刘虎, 焦春荣, 等. 层压成型工艺制备近净成型反应烧结碳化硅材料的研究[J]. 中国陶瓷, 2018, 54(4): 57−61. doi: 10.16521/j.cnki.issn.1001-9642.2018.04.011

    Yang J H, Liu H, Jiao C R, et al. Research on reaction-bonded silicon carbide with near-net-shape prepared by lamination process[J]. China Ceram, 2018, 54(4): 57−61. doi: 10.16521/j.cnki.issn.1001-9642.2018.04.011

    [18]

    保罗•约德尔. 光机系统设计[M]. 周海宪, 程云芳, 译. 3版. 北京: 机械工业出版社, 2008: 471–474.

    Yoder Jr P R. Opto-Mechanical Systems Design[M]. Zhou H X, Cheng Y F, trans. 3rd ed. Beijing: China Machine Press, 2008: 471–474.

  • 加载中

(11)

(2)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2022-09-15
修回日期:  2023-01-24
录用日期:  2023-01-31
刊出日期:  2023-04-25

目录

/

返回文章
返回