融合暗通道先验损失的生成对抗网络用于单幅图像去雾

程德强,尤杨杨,寇旗旗,等. 融合暗通道先验损失的生成对抗网络用于单幅图像去雾[J]. 光电工程,2022,49(7): 210448. doi: 10.12086/oee.2022.210448
引用本文: 程德强,尤杨杨,寇旗旗,等. 融合暗通道先验损失的生成对抗网络用于单幅图像去雾[J]. 光电工程,2022,49(7): 210448. doi: 10.12086/oee.2022.210448
Cheng D Q, You Y Y, Kou Q Q, et al. A generative adversarial network incorporating dark channel prior loss used for single image defogging[J]. Opto-Electron Eng, 2022, 49(7): 210448. doi: 10.12086/oee.2022.210448
Citation: Cheng D Q, You Y Y, Kou Q Q, et al. A generative adversarial network incorporating dark channel prior loss used for single image defogging[J]. Opto-Electron Eng, 2022, 49(7): 210448. doi: 10.12086/oee.2022.210448

融合暗通道先验损失的生成对抗网络用于单幅图像去雾

  • 基金项目:
    国家自然科学基金资助项目(51774281)
详细信息
    作者简介:
    *通讯作者: 寇旗旗,1120074179@qq.com
  • 中图分类号: TP391.4

A generative adversarial network incorporating dark channel prior loss used for single image defogging

  • Fund Project: National Natural Science Foundation of China (51774281)
More Information
  • 针对基于成对抗网络(GAN)的单幅图像去雾算法,其模型对样本真值过度拟合,而在自然图像上表现一般的问题,本文设计了一种融合暗通道先验损失的生成对抗网络来进行单幅图像去雾。该先验损失可以在网络训练中对模型预测结果产生影响,纠正暗通道特征图的稀疏性与偏度特性,提升去雾效果的同时阻止模型对样本真值过度拟合。另外,为了解决传统的暗通道特征图提取方法存在非凸函数,难以嵌入网络训练的问题,引入了一种基于像素值压缩的暗通道特征图提取策略。该策略将最小值滤波等效为对像素值压缩,其实现函数是一个凸函数,有利于嵌入网络训练,增强算法整体的鲁棒性。另外,基于像素值压缩的暗通道特征图提取策略不需要设置固定尺度提取暗通道特征图,对不同尺寸的图像均有良好的适应性。实验结果表明,相较于其它先进算法,本文算法在真实图像以及SOTS等合成测试集上均有良好的表现。

  • Overview: In the atmospheric environment, there are many fine particles in the air, which will lead to the absorption or refraction of light and affect the normal radiation of light. In this case, the color, contrast, saturation and detail of the image captured by the camera are often seriously affected. At present, computer vision needs to realize many high-level tasks such as pedestrian recognition, automatic driving, air navigation, remote sensing and telemetry, and these high-level tasks have a high demand for image quality. Therefore, it is of great significance to carry out single image defogging to obtain higher quality images before performing high-level tasks. In recent years, single image defogging using generative adversarial networks(GAN) has become a hot research aspect. However, the traditional GAN algorithms rely on annotated datasets, which is easy to cause over-fitting of ground truth, and usually performs not well on natural images. To solve this problem, this paper designed a GAN network incorporating dark channel prior loss to defogging single image. This prior loss can influence the model prediction results in network training and correct the sparsity and skewness of the dark channel feature map. At the same time, it can definitely improve the actual defogging effect and prevent the model from over-fitting problem. In addition, this paper introduced a new method to obtain dark channel feature map, which compresses pixel values instead of minimum filtering. This method does not need to set fixed scale to extract dark channel feature map, and has good adaptability to images with different resolutions. Moreover, the implementation function of this method is a convex function, which is conducive to embedded network training and enhances the overall robustness of the algorithm. The proposed algorithm is quantitatively analyzed in the comprehensive test set SOTS and the mixed subjective test set HSTS. The peak signal-to-noise ratio (PSNR), structural similarity SSIM and BCEA Metrics are used as the final evaluation indexes. The final result shows that our algorithm can raise PSNR up to 25.35 and raise SSIM up to 0.96 on HSTS test sets. While it comes to SOTS test sets, our method achieves the result of 24.44 PSNR and 0.89 SSIM. When we use BCEA metrics to evaluate our algorithm, we achieve the result of 0.8010 e,1.6672 r and 0.0123 p. In summary, Experimental results show that the proposed algorithm performs well on real images and synthetic test sets compared with other advanced algorithms.

  • 加载中
  • 图 1  对抗生成网络框架

    Figure 1.  Framework of adversarial generation network

    图 2  暗通道特征图对照。(a) 原始图像;(b) 暗通道特征

    Figure 2.  Dark channel feature comparison.(a) Original images; (b) Dark channel feature

    图 3  暗通道特征图强度分布。(a) 强度分布;(b) 5000张图像的平均强度分布

    Figure 3.  Dark channel feature intensity distribution. (a) Intensity distribution; (b) Average intensity distribution of 5000 images

    图 4  本文算法框架

    Figure 4.  Framework of the proposed algorithm

    图 5  各算法在合成图像上的定性比较

    Figure 5.  Qualitative comparison on synthetic images

    图 6  各算法在真实图像上的定性比较

    Figure 6.  Qualitative comparison on real hazy images

    图 7  对照组与本文算法在SOTS测试集以及HSTS测试集合成图像上的定量比较

    Figure 7.  Quantitative comparison with control group on SOTS test-set & synthetic images of HSTS test-set

    图 8  对照组与本文算法在HSTS测试集真实图像上的定性比较

    Figure 8.  Qualitative comparison with control groups on real images of HSTS test-set

    图 9  对照组与本文算法在HSTS测试集真实图像上的定量比较

    Figure 9.  Quantitative comparison with control group on real hazy images of HSTS test-set

    表 1  生成器网络参数

    Table 1.  Parameters of generator network

    卷积层ConvResConvResConvResUpconvResUpconvResConvTanh
    输入通道数3646412812825625612812864643
    输出通道数6464128128256256128128646433
    卷积核尺寸753447
    步长122221
    边界填充311113
    下载: 导出CSV

    表 2  判别器网络参数

    Table 2.  Parameters of the discriminator network

    卷积层Conv1Conv2Conv3Conv4Conv5
    输出通道数641282565121
    卷积核大小44444
    步长22211
    下载: 导出CSV

    表 3  各算法在SOTS测试集以及HSTS测试集合成图像上的定量结果

    Table 3.  Quantitative results of each algorithm on SOTS test-set & synthetic images of HSTS test-set

    数据集HSTSSOTS-outdoorSOTS-indoor
    评价指标PSNRSSIMPSNRSSIMPSNRSSIM
    DCP[7]17.220.8017.560.8220.150.87
    BCCR[9]15.090.7415.490.7816.880.79
    CAP[10]21.540.8722.300.9119.050.84
    MSCNN[15]18.290.8419.560.8617.110.81
    D-Net[16]24.490.9222.720.8621.140.85
    AOD-Net[17]21.580.9221.340.9219.380.85
    GFN[18]22.940.8721.490.8422.320.88
    DEnergy[26]24.440.9324.080.9319.250.83
    本文算法25.350.9625.170.9623.700.82
    下载: 导出CSV

    表 4  各算法在D-HAZY、HazeRD以及BeDDE测试集上的定量结果

    Table 4.  Quantitative results of each algorithm on D-HAZY & HazeRD & BeDDE test-set

    数据集 D-HAZY HazeRD BeDDE
    评价指标 PSNR SSIM PSNR SSIM VSI VI RI
    DCP[7] 15.09 0.83 14.01 0.39 0.946 0.911 0.965
    MSCNN[15] 13.57 0.80 15.58 0.42 0.947 0.892 0.972
    D-Net[16] 13.76 0.81 15.53 0.41 0.952 0.890 0.972
    AOD-Net[17] 13.13 0.79 15.63 0.45 0.954 0.896 0.970
    CycleGAN[22] 13.55 0.77 15.64 0.44 0.942 0.866 0.961
    RefineDNet[39] 15.44 0.83 15.61 0.43 0.960 0.907 0.971
    SM-Net[24] 15.32 0.81 15.55 0.40 0.961 0.899 0.969
    本文算法 15.39 0.82 15.59 0.44 0.967 0.899 0.967
    下载: 导出CSV

    表 5  对照组与本文算法在HSTS测试集真实图像上的定量结果

    Table 5.  Quantitative results of the control groups & proposed algorithm on real images of HSTS test-set

    Pic1Pic2Pic3Pic4Pic5Pic6Pic7Pic8Pic9Pic10
    对照组1e0.0162-0.05060.08680.16290.38690.33910.62621.00140.95790.0160
    r1.01001.04351.12911.04501.67431.42861.46411.46061.82781.0928
    p0.00000.000000.001900.000200.00020.00030.0000
    对照组2e0.33600.64210.27090.07740.38330.43380.78451.83480.62070.4650
    r1.46051.42221.26401.20471.69261.43821.33791.51261.60211.1351
    p0.01020.11550.00010.008100.00720.00020.00810.00160.0286
    本文算法e0.35340.60610.88700.12320.45040.62651.23782.07141.14430.5197
    r1.62841.55761.66311.35722.15991.68631.57931.78141.95611.3026
    p0.00820.10150.00010.002000.00790.00110.01080.00130.0153
    下载: 导出CSV

    表 6  各算法在SOTS测试集上的运行速度(时间/s)

    Table 6.  Run time of each algorithm on SOTS test-set

    DCP[7]CAP[10]MSCNN[15]D-Net[16]AOD-Net[17]GFN[18]CycleGAN[22]本文算法
    DeviceCPUCPUGPUCPUGPUGPUGPUGPU
    Run time1.740.723.413.330.566.102.961.37
    下载: 导出CSV
  • [1]

    吕晨, 程德强, 寇旗旗, 等. 基于YOLOv3和ASMS的目标跟踪算法[J]. 光电工程, 2021, 48(2): 200175.

    Lv C, Cheng D Q, Kou Q Q, et al. Target tracking algorithm based on YOLOv3 and ASMS[J]. Opto-Electron Eng, 2021, 48(2): 200175.

    [2]

    寇旗旗, 程德强, 于文洁, 等. 融合CLBP和局部几何特征的纹理目标分类[J]. 光电工程, 2019, 46(11): 180604.

    Kou Q Q, Cheng D Q, Yu W J, et al. Texture target classification with CLBP and local geometric features[J]. Opto-Electron Eng, 2019, 46(11): 180604.

    [3]

    江曼, 张皓翔, 程德强, 等. 融合HSV与方向梯度特征的多尺度图像检索[J]. 光电工程, 2021, 48(11): 210310.

    Jiang M, Zhang H X, Cheng D Q, et al. Multi-scale image retrieval based on HSV and directional gradient features[J]. Opto-Electron Eng, 2021, 48(11): 210310.

    [4]

    Kim T K, Paik J K, Kang B S. Contrast enhancement system using spatially adaptive histogram equalization with temporal filtering[J]. IEEE Trans Consum Electron, 1998, 44(1): 82−87. doi: 10.1109/30.663733

    [5]

    Zhou J C, Zhang D H, Zou P Y, et al. Retinex-based laplacian pyramid method for image defogging[J]. IEEE Access, 2019, 7: 122459−122472. doi: 10.1109/ACCESS.2019.2934981

    [6]

    Nayar S K, Narasimhan S G. Vision in bad weather[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, 1999: 820–827.

    [7]

    He K M, Sun J, Tang X O. Single image haze removal using dark channel prior[J]. IEEE Trans Pattern Anal Mach Intell, 2011, 33(12): 2341−2353. doi: 10.1109/TPAMI.2010.168

    [8]

    He K M, Sun J, Tang X O. Guided image filtering[J]. IEEE Trans Pattern Anal Mach Intell, 2013, 35(6): 1397−1409. doi: 10.1109/TPAMI.2012.213

    [9]

    Meng G F, Wang Y, Duan J Y, et al. Efficient image dehazing with boundary constraint and contextual regularization[C]//Proceedings of 2013 IEEE International Conference on Computer Vision, Sydney, 2013: 617–624.

    [10]

    Zhu Q S, Mai J M, Shao L. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Trans Image Process, 2015, 24(11): 3522−3533. doi: 10.1109/TIP.2015.2446191

    [11]

    王新, 张旭东, 张骏, 等. 结合光场多线索和大气散射模型的去雾算法[J]. 光电工程, 2020, 47(9): 190634.

    Wang X, Zhang X D, Zhang J, et al. Image dehazing algorithm by combining light field multi-cues and atmospheric scattering model[J]. Opto-Electron Eng, 2020, 47(9): 190634.

    [12]

    Zhao D, Xu L, Yan Y H, et al. Multi-scale Optimal Fusion model for single image dehazing[J]. Signal Process Image Commun, 2019, 74: 253−265. doi: 10.1016/j.image.2019.02.004

    [13]

    Yang Y, Wang Z W. Haze removal: push DCP at the edge[J]. IEEE Signal Process Lett, 2020, 27: 1405−1409. doi: 10.1109/LSP.2020.3013741

    [14]

    Wang S, Chen J Y. Single image dehazing using dark channel fusion and dark channel confidence[C]//Proceedings of 2020 International Conference on Big Data & Artificial Intelligence & Software Engineering, Bangkok, 2020: 439–444.

    [15]

    Ren W Q, Liu S, Zhang H, et al. Single image dehazing via multi-scale convolutional neural networks[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, 2016: 154–169.

    [16]

    Cai B L, Xu X M, Jia K, et al. DehazeNet: an end-to-end system for single image haze removal[J]. IEEE Trans Image Process, 2016, 25(11): 5187−5198. doi: 10.1109/TIP.2016.2598681

    [17]

    Li B Y, Peng X L, Wang Z Y, et al. AOD-Net: all-in-one dehazing network[C]//Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, 2017: 4780–4788.

    [18]

    Chen D D, He M M, Fan Q N, et al. Gated context aggregation network for image dehazing and deraining[C]//Proceedings of 2019 IEEE Winter Conference on Applications of Computer Vision, Waikoloa, 2019: 1375–1383.

    [19]

    Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, 2014: 2672–2680.

    [20]

    Li R D, Pan J S, Li Z H, et al. Single image dehazing via conditional generative adversarial network[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 2018: 8202–8211.

    [21]

    Johnson J, Alahi A, Fei-Fei L. Perceptual losses for real-time style transfer and super-resolution[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, 2016: 694–711.

    [22]

    Engin D, Genc A, Ekenel H K. Cycle-dehaze: enhanced CycleGAN for single image dehazing[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, 2018: 939–946.

    [23]

    Zhu J Y, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, 2017: 2242–2251.

    [24]

    Li L R H, Dong Y L, Ren W Q, et al. Semi-supervised image dehazing[J]. IEEE Trans Image Process, 2020, 29: 2766−2779. doi: 10.1109/TIP.2019.2952690

    [25]

    Pan J S, Sun D Q, Pfister H, et al. Blind image deblurring using dark channel prior[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016: 1628–1636.

    [26]

    Golts A, Freedman D, Elad M. Unsupervised single image dehazing using dark channel prior loss[J]. IEEE Trans Image Process, 2020, 29: 2692−2701. doi: 10.1109/TIP.2019.2952032

    [27]

    Shen Z Y, Lai W S, Xu T F, et al. Deep semantic face deblurring[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 2018: 8260–8269.

    [28]

    Tao X, Gao H Y, Shen X Y, et al. Scale-recurrent network for deep image deblurring[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 2018: 8174–8182.

    [29]

    Nah S, Kim T H, Lee K M. Deep multi-scale convolutional neural network for dynamic scene deblurring[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 2017: 257–265.

    [30]

    Isola P, Zhu J Y, Zhou T H, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 2017: 5967–5976.

    [31]

    Ledig C, Theis L, Huszár F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 2017: 105–114.

    [32]

    He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016: 770–778.

    [33]

    Li B Y, Ren W Q, Fu D P, et al. Benchmarking single-image dehazing and beyond[J]. IEEE Trans Image Process, 2019, 28(1): 492−505. doi: 10.1109/TIP.2018.2867951

    [34]

    Silberman N, Hoiem D, Kohli P, et al. Indoor segmentation and support inference from RGBD images[C]//Proceedings of the 12th European Conference on Computer Vision, Florence, 2012.

    [35]

    Scharstein D, Szeliski R. High-accuracy stereo depth maps using structured light[C]//Proceedings of 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, 2003: I-I.

    [36]

    Beijing realtime weather photos[EB/OL]. (2022-06). https://www.tour-beijing.com/real_time_weather_photo/.

    [37]

    Liu F Y, Shen C H, Lin G S, et al. Learning depth from single monocular images using deep convolutional neural fields[J]. IEEE Trans Pattern Anal Mach Intell, 2016, 38(10): 2024−2039. doi: 10.1109/TPAMI.2015.2505283

    [38]

    Hambarde P, Dudhane A, Patil P W, et al. Depth estimation from single image and semantic prior[C]//Proceedings of 2020 IEEE International Conference on Image Processing, Abu Dhabi, 2020: 1441–1445.

    [39]

    Zhao S Y, Zhang L, Shen Y, et al. RefineDNet: a weakly supervised refinement framework for single image dehazing[J]. IEEE Trans Image Process, 2021, 30: 3391−3404. doi: 10.1109/TIP.2021.3060873

    [40]

    Ancuti C, Ancuti C O, De Vleeschouwer C, et al. D-HAZY: a dataset to evaluate quantitatively dehazing algorithms[C]//Proceedings of 2016 IEEE International Conference on Image Processing, Phoenix, 2016: 2226–2230.

    [41]

    Zhang Y F, Ding L, Sharma G. HazeRD: an outdoor scene dataset and benchmark for single image dehazing[C]//Proceedings of 2017 IEEE International Conference on Image Processing, Beijing, 2017: 3205–3209.

    [42]

    Zhang L, Shen Y, Li H Y. VSI: a visual saliency-induced index for perceptual image quality assessment[J]. IEEE Trans Image Process, 2014, 23(10): 4270−4281. doi: 10.1109/TIP.2014.2346028

    [43]

    Zhao S Y, Zhang L, Huang S Y, et al. Dehazing evaluation: real-world benchmark datasets, criteria, and baselines[J]. IEEE Trans Image Process, 2020, 29: 6947−6962. doi: 10.1109/TIP.2020.2995264

    [44]

    Hautière N, Tarel J P, Aubert D, et al. Blind contrast enhancement assessment by gradient ratioing at visible edges[J]. Image Anal Stereol, 2008, 27(2): 87−95.

    [45]

    崔光茫, 张克奇, 毛磊, 等. 结合多尺度分解和梯度绝对值算子的显微图像清晰度评价方法[J]. 光电工程, 2019, 46(6): 180531.

    Cui G M, Zhang K Q, Mao L, et al. Micro-image definition evaluation using multi-scale decomposition and gradient absolute value[J]. Opto-Electron Eng, 2019, 46(6): 180531.

  • 加载中

(10)

(6)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2022-01-19
修回日期:  2022-04-01
刊出日期:  2022-07-25

目录

/

返回文章
返回