光学超分辨平面超构透镜研究进展

周毅,梁高峰,温中泉,等. 光学超分辨平面超构透镜研究进展[J]. 光电工程,2021,48(12): 210399. doi: 10.12086/oee.2021.210399
引用本文: 周毅,梁高峰,温中泉,等. 光学超分辨平面超构透镜研究进展[J]. 光电工程,2021,48(12): 210399. doi: 10.12086/oee.2021.210399
Zhou Y, Liang G F, Wen Z Q, et al. Recent research progress in optical super-resolution planar meta-lenses[J]. Opto-Electron Eng, 2021, 48(12): 210399. doi: 10.12086/oee.2021.210399
Citation: Zhou Y, Liang G F, Wen Z Q, et al. Recent research progress in optical super-resolution planar meta-lenses[J]. Opto-Electron Eng, 2021, 48(12): 210399. doi: 10.12086/oee.2021.210399

光学超分辨平面超构透镜研究进展

  • 基金项目:
    国家自然科学基金资助项目(61927818,61575031);国家重点基础研究发展计划资助项目(2013CBA01700)
详细信息
    作者简介:
    通讯作者: 周毅, E-mail: yi_zhou@cqu.edu.cn
  • 中图分类号: O436.3

Recent research progress in optical super-resolution planar meta-lenses

  • Fund Project: National Natural Science Foundation of China (61927818, 61575031) and National Program on Key Basic Research Project (2013CBA01700)
More Information
  • 从光学自身机理上突破光学理论分辨率极限,实现远场超分辨光学点扩散函数,进而实现超分辨聚焦和超分辨成像,在激光加工、超分辨光学显微和超分辨望远等系统有着重要应用前景。近年来,光学超构表面的发展使得在亚波长尺度上实现光场振幅、相位及偏振的独立调控成为可能,为研制新型的超分辨平面超构透镜提供了更加灵活的手段。本文介绍了基于光学超构表面的超分辨平面超构透镜、相关测试技术方面几年来的研究进展,并讨论了该领域面临的问题和未来的研究重点和方向。

  • Overview: Due to the optical diffraction limitation, conventional optical systems can hardly achieve a resolution less than 0.5λ/NA, where λ is the wavelength of the light source and NA presents the numerical aperture of the objective. Breaking through the theoretical resolution limit in the optical mechanism and realizing super-resolution optical point-spread-function is important in achieving super-resolution focusing and imaging, which have great potential applications in laser processing, super-resolution microscopy and telescope systems. Many ideas have been provided before to surpass the theoretical resolution limit, such as stimulated emission depletion (STED), single-molecule localization (SML), and structured illumination microscopy (SIM), but most of these will require labeling the samples and thus causes changes of the molecule behaviors. Negative-index super lens, which has been proposed to reconstruct and capture evanescent fields, has not yet been applied as a practical imaging technique because of substantial technological challenges. In recent years, with the development of optical metasurfaces, it is possible to achieve independent control of the amplitude, phase, and polarization of the optical field on the sub-wavelength scale, which in turn provides a more flexible means for the development of a new type of super-resolution planar super-lens. Optical super-oscillation, which has been exploited worldwide recently, is a phenomenon that a band-limited wave to oscillate locally much faster than the highest Fourier component of the signal. In principle, a super-oscillatory lens could produce a focus of any prescribed size, which can be potentially used in super-resolution microscopy, high-resolution laser manufacturing, and telescopes. This article reviews the recent research progress of super-resolution planar metalenses based on optical metasurfaces and related testing techniques. We introduce different methods to produce multiple-wavelength achromatic super-resolution metalenses and corresponding focusing results, as well as the continuous broadband achromatic super-resolution metalenses. Meanwhile, we explain the ways to design vectorial super-resolution meta-lenses, such as by phase and polarization manipulations and show the corresponding results. A new idea using an optical microscope to directly image the focused optical field is elaborated and compared with other existing methods. Finally, we present the typical applications of super-resolution metalenses in some areas such as confocal microscopy, micro/nano fabrication and nanometic displacement detection. The problems faced in this field and future research priorities and directions are also discussed in this review paper.

  • 加载中
  • 图 1  超振荡函数示意图。一个采用Nmax个谐波构建的超振荡函数,在空间局部位置其空间变化远远高于最高次谐波[12]

    Figure 1.  The schematic diagram of the super-oscillation function. The super-oscillation function, which is constructed by proper superposition of Nmax harmonics, and the oscillation is much faster than the highest harmonic function at the local area near the center [12]

    图 2  全介质超构表面。

    Figure 2.  All dielectric metasurfaces.

    图 3  多波长消色差超分辨超构透镜及聚焦实验、仿真结果。

    Figure 3.  Multiple-wavelength achromatic super-resolution metalenses and corresponding focusing results.

    图 4  基于振幅调控和色散调控的连续宽带消色差超分辨平面超构透镜[49]

    Figure 4.  A continuous broadband achromatic super-resolution metalens based on amplitude modulation and dispersion engineering[49].

    图 5  平场超分辨平面超构透镜及聚焦实验、仿真结果:

    Figure 5.  Flat-field super-resolution metalenses and corresponding focusing experimental and numerical results.

    图 6  三维空心光场矢量超分辨平面超构透镜及聚焦实验、仿真结果。

    Figure 6.  Vectorial super-resolution meta-lenses for generation of three-dimensional hollow optical fields and corresponding experimental and numerical results.

    图 7  基于相位-偏振调控的矢量超分辨平面超构透镜。

    Figure 7.  Vectorial super-resolution meta-lenses based on the independent phase and polarization manipulation.

    图 8  基于光学显微的聚焦光场直接成像[87]

    Figure 8.  The direct imaging of focused optical field based on the optical microscope[87].

    图 9  超分辨透镜应用。

    Figure 9.  The applications of super-resolution metalenses.

  • [1]

    Lipson S G, Lipson H, Tannhauser D S. Optical Physics[M]. New York: Cambridge University Press, 1995.

    [2]

    干福熹, 王阳. 突破光学衍射极限, 发展纳米光学和光子学[J]. 光学学报, 2011, 31(9): 0900104.

    Gan F X, Wang Y. Breaking through the optical diffraction limits, developing the nano-optics and photonics[J]. Acta Opt Sin, 2011, 31(9): 0900104.

    [3]

    李帅, 匡翠方, 丁志华, 等. 受激发射损耗显微术(STED)的机理及进展研究[J]. 激光生物学报, 2013, 22(2): 103–113. doi: 10.3969/j.issn.1007-7146.2013.02.002

    Li S, Kuang C F, Ding Z H, et al. A review on concept and development of stimulated emission depletion microscopy (STED)[J]. Acta Laser Biol Sin, 2013, 22(2): 103–113. doi: 10.3969/j.issn.1007-7146.2013.02.002

    [4]

    Dan D, Lei M, Yao B L, et al. DMD-based LED-illumination Super-resolution and optical sectioning microscopy[J]. Sci Rep, 2013, 3(1): 1116. doi: 10.1038/srep01116

    [5]

    Novotny L, Hecht B. Principles of Nano-Optics[M]. 2nd ed. Cambridge: Cambridge University Press, 2012.

    [6]

    Pan L, Park Y, Xiong Y, et al. Maskless plasmonic lithography at 22 nm resolution[J]. Sci Rep, 2011, 1(1): 175. doi: 10.1038/srep00175

    [7]

    Zhang X, Liu Z W. Superlenses to overcome the diffraction limit[J]. Nat Mater, 2008, 7(6): 435–441. doi: 10.1038/nmat2141

    [8]

    Aieta F, Genevet P, Kats M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Lett, 2012, 12(9): 4932–4936. doi: 10.1021/nl302516v

    [9]

    Ishii S, Shalaev V M, Kildishev A V. Holey-metal lenses: sieving single modes with proper phases[J]. Nano Lett, 2013, 13(1): 159–163. doi: 10.1021/nl303841n

    [10]

    Saxena S, Chaudhary R P, Singh A, et al. Plasmonic micro lens for extraordinary transmission of broadband light[J]. Sci Rep, 2014, 4(1): 5586.

    [11]

    Dong J J, Liu J, Hu B, et al. Subwavelength light focusing with a single slit lens based on the spatial multiplexing of chirped surface gratings[J]. Appl Phys Lett, 2014, 104(1): 011115. doi: 10.1063/1.4861595

    [12]

    Huang F M, Chen Y F, de Abajo F J G, et al. Optical super-resolution through super-oscillations[J]. J Opt A Pure Appl Opt, 2007, 9(9): S285–S288. doi: 10.1088/1464-4258/9/9/S01

    [13]

    Huang F M, Zheludev N I. Super-resolution without evanescent waves[J]. Nano Lett, 2009, 9(3): 1249–1254. doi: 10.1021/nl9002014

    [14]

    Wen Z Q, He Y H, Li Y Y, et al. Super-oscillation focusing lens based on continuous amplitude and binary phase modulation[J]. Opt Express, 2014, 22(18): 22163–22171. doi: 10.1364/OE.22.022163

    [15]

    He Q, Sun S L, Xiao S Y, et al. High-efficiency metasurfaces: principles, realizations, and applications[J]. Adv Opt Mater, 2018, 6(19): 1800415. doi: 10.1002/adom.201800415

    [16]

    Chen S Q, Li Z, Zhang Y B, et al. Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics[J]. Adv Opt Mater, 2018, 6(13): 1800104. doi: 10.1002/adom.201800104

    [17]

    Luo X G. Subwavelength optical engineering with metasurface waves[J]. Adv Opt Mater, 2018, 6(7): 1701201. doi: 10.1002/adom.201701201

    [18]

    Neshev D, Aharonovich I. Optical metasurfaces: new generation building blocks for multi-functional optics[J]. Light Sci Appl, 2018, 7: 58. doi: 10.1038/s41377-018-0058-1

    [19]

    Su V C, Cheng H C, Sun G, et al. Advances in optical metasurfaces: fabrication and applications [Invited][J]. Opt Express, 2018, 26(10): 13148–13182. doi: 10.1364/OE.26.013148

    [20]

    Pu M B, Guo Y H, Ma X L, et al. Methodologies for on-demand dispersion engineering of waves in metasurfaces[J]. Adv Opt Mater, 2019, 7(14): 1801376. doi: 10.1002/adom.201801376

    [21]

    Lin D M, Fan P Y, Hasman E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298–302. doi: 10.1126/science.1253213

    [22]

    Jahani S, Jacob Z. All-dielectric metamaterials[J]. Nat Nanotechnol, 2016, 11(1): 23–36. doi: 10.1038/nnano.2015.304

    [23]

    Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190–1194. doi: 10.1126/science.aaf6644

    [24]

    Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nat Nanotechnol, 2015, 10(11): 937–943. doi: 10.1038/nnano.2015.186

    [25]

    Arbabi E, Arbabi M, Kamali S M, et al. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules[J]. Optica, 2016, 3(6): 628–633. doi: 10.1364/OPTICA.3.000628

    [26]

    Jia D L, Tian Y, Ma W, et al. Transmissive terahertz metalens with full phase control based on a dielectric metasurface[J]. Opt Lett, 2017, 42(21): 4494–4497. doi: 10.1364/OL.42.004494

    [27]

    Jiang X, Chen H, Li Z Y, et al. All-dielectric metalens for terahertz wave imaging[J]. Opt Express, 2018, 26(11): 14132–14142. doi: 10.1364/OE.26.014132

    [28]

    Chen H, Wu Z X, Li Z Y, et al. Sub-wavelength tight-focusing of terahertz waves by polarization-independent high-numerical-aperture dielectric metalens[J]. Opt Express, 2018, 26(23): 29817–29825. doi: 10.1364/OE.26.029817

    [29]

    Hu Y Q, Wang X D, Luo X H, et al. All-dielectric metasurfaces for polarization manipulation: principles and emerging applications[J]. Nanophotonics, 2020, 9(12): 3755–3780. doi: 10.1515/nanoph-2020-0220

    [30]

    Dong Y, Xu Z J, Li N X, et al. Si metasurface half-wave plates demonstrated on a 12-inch CMOS platform[J]. Nanophotonics, 2020, 9(1): 149–157.

    [31]

    Kruk S, Hopkins B, Kravchenko I I, et al. Invited Article: broadband highly efficient dielectric metadevices for polarization control[J]. APL Photonics, 2016, 1(3): 030801. doi: 10.1063/1.4949007

    [32]

    Chen C, Gao S L, Xiao X J, et al. Highly efficient metasurface quarter-wave plate with wave front engineering[J]. Adv Photonics Res, 2021, 2(3): 2000154. doi: 10.1002/adpr.202000154

    [33]

    Zhang Y B, Liu H, Cheng H, et al. Multidimensional manipulation of wave fields based on artificial microstructures[J]. Opto-Electron Adv, 2020, 3(11): 200002. doi: 10.29026/oea.2020.200002

    [34]

    Grosjean T, Courjon D. Polarization filtering induced by imaging systems: effect on image structure[J]. Phys Rev E, 2003, 67(4): 046611. doi: 10.1103/PhysRevE.67.046611

    [35]

    Rogers E T F, Zheludev N I. Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging[J]. J Opt, 2013, 15(9): 094008. doi: 10.1088/2040-8978/15/9/094008

    [36]

    陈刚, 温中泉, 武志翔. 光学超振荡与超振荡光学器件[J]. 物理学报, 2017, 66(14): 144205. doi: 10.7498/aps.66.144205

    Chen G, Wen Z Q, Wu Z X. Optical super-oscillation and super-oscillatory optical devices[J]. Acta Phys Sin, 2017, 66(14): 144205. doi: 10.7498/aps.66.144205

    [37]

    Berry M, Zheludev N, Aharonov Y, et al. Roadmap on superoscillations[J]. J Opt, 2019, 21(5): 053002. doi: 10.1088/2040-8986/ab0191

    [38]

    Chen G, Wen Z Q, Qiu C W. Superoscillation: from physics to optical applications[J]. Light Sci Appl, 2019, 8: 56. doi: 10.1038/s41377-019-0163-9

    [39]

    Rogers K S, Rogers E T F. Realising superoscillations: a review of mathematical tools and their application[J]. J Opt, 2020, 2(4): 042004.

    [40]

    Zheludev N I, Yuan G H. Optical superoscillation technologies beyond the diffraction limit[J]. Nat Rev Phys, 2022, 4(1): 16–32. doi: 10.1038/s42254-021-00382-7

    [41]

    Wang H T, Hao C L, Lin H, et al. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses[J]. Opto-Electron Adv, 2021, 4(2): 200031.

    [42]

    Yuan G H, Rogers E T F, Zheludev N I. Achromatic super-oscillatory lenses with sub-wavelength focusing[J]. Light Sci Appl, 2017, 6(9): e17036. doi: 10.1038/lsa.2017.36

    [43]

    Jin N B, Rahmat-Samii Y. Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations[J]. IEEE Trans Antennas Propag, 2007, 55(3): 556–567. doi: 10.1109/TAP.2007.891552

    [44]

    Tang D L, Chen L, Liu J J. Visible achromatic super-oscillatory metasurfaces for sub-diffraction focusing[J]. Opt Express, 2019, 27(9): 12308–12316. doi: 10.1364/OE.27.012308

    [45]

    Chen L, Liu J, Zhang X H, et al. Achromatic super-oscillatory metasurface through optimized multiwavelength functions for sub-diffraction focusing[J]. Opt Letters, 2020, 45(20): 5772–5775. doi: 10.1364/OL.404764

    [46]

    Lu X J, Guo Y H, Pu M B, et al. Switchable polarization-multiplexed super-oscillatory metasurfaces for achromatic sub-diffraction focusing[J]. Opt Express, 2020, 28(26): 39024–39037. doi: 10.1364/OE.413078

    [47]

    Dai X M, Dong F L, Zhang K, et al. Holographic super-resolution metalens for achromatic sub-wavelength focusing[J]. ACS Photonics, 2021, 8(8): 2294–2303. doi: 10.1021/acsphotonics.1c00411

    [48]

    Chen W T, Zhu A Y, Sanjeev V, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nat Nanotechnol, 2018, 13(3): 220–226. doi: 10.1038/s41565-017-0034-6

    [49]

    Zhao F, Li Z P, Dai X M, et al. Broadband achromatic sub-diffraction focusing by an amplitude-modulated terahertz metalens[J]. Adv Opt Mater, 2020, 8(21): 2000842. doi: 10.1002/adom.202000842

    [50]

    Zhao F, Jiang X, Li S, et al. Optimization-free approach for broadband achromatic metalens of high-numerical-aperture with high-index dielectric metasurface[J]. J Phys D Appl Phys, 2019, 52(50): 505110. doi: 10.1088/1361-6463/ab46c4

    [51]

    Lu X J, Guo Y H, Pu M B, et al. Broadband achromatic metasurfaces for sub-diffraction focusing in the visible[J]. Opt Express, 2021, 29(4): 5947–5958. doi: 10.1364/OE.417036

    [52]

    Liu W W, Li Z C, Cheng H, et al. Metasurface enabled wide-angle fourier lens[J]. Adv Mater, 2018, 30(23): 1706368. doi: 10.1002/adma.201706368

    [53]

    Kalvach A, Szabó Z. Aberration-free flat lens design for a wide range of incident angles[J]. J Opt Soc Am B, 2016, 33(2): A66–A71. doi: 10.1364/JOSAB.33.000A66

    [54]

    Groever B, Chen W T, Capasso F. Meta-lens doublet in the visible region[J]. Nano Lett, 2017, 17(8): 4902–4907. doi: 10.1021/acs.nanolett.7b01888

    [55]

    Arbabi A, Arbabi E, Kamali S M, et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations[J]. Nat Commun, 2016, 7: 13682. doi: 10.1038/ncomms13682

    [56]

    Pu M B, Li X, Guo Y H, et al. Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing[J]. Opt Express, 2017, 25(25): 31471–31477. doi: 10.1364/OE.25.031471

    [57]

    Zhang F, Pu M B, Li X, et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces[J]. Adv Mater, 2021, 33(11): 2008157. doi: 10.1002/adma.202008157

    [58]

    Zhang Q, Dong F L, Li H X, et al. High-numerical-aperture dielectric metalens for super-resolution focusing of oblique incident light[J]. Adv Opt Mater, 2020, 8(9): 1901885. doi: 10.1002/adom.201901885

    [59]

    Li Z, Wang C T, Wang Y Q, et al. Super-oscillatory metasurface doublet for sub-diffraction focusing with a large incident angle[J]. Opt Express, 2021, 29(7): 9991–9999. doi: 10.1364/OE.417884

    [60]

    Zhan Q W. Trapping metallic Rayleigh particles with radial polarization[J]. Opt Express, 2004, 12(15): 3377–3382. doi: 10.1364/OPEX.12.003377

    [61]

    Liu W, Dong D S, Yang H, et al. Robust and high-speed rotation control in optical tweezers by using polarization synthesis based on heterodyne interference[J]. Opto-Electron Adv, 2020, 3(8): 200022. doi: 10.29026/oea.2020.200022

    [62]

    Gupta D N, Kant N, Kim D E, et al. Electron acceleration to GeV energy by a radially polarized laser[J]. Phys Lett A, 2007, 368(5): 402–407. doi: 10.1016/j.physleta.2007.04.030

    [63]

    Kozawa Y, Matsunaga D, Sato S. Superresolution imaging via superoscillation focusing of a radially polarized beam[J]. Optica, 2018, 5(2): 86–92. doi: 10.1364/OPTICA.5.000086

    [64]

    Yu W T, Ji Z H, Dong D S, et al. Super-resolution deep imaging with hollow Bessel beam STED microscopy[J]. Laser Photonics Rev, 2016, 10(1): 147–152. doi: 10.1002/lpor.201500151

    [65]

    Jiang Y S, Li X P, Gu M. Generation of sub-diffraction-limited pure longitudinal magnetization by the inverse Faraday effect by tightly focusing an azimuthally polarized vortex beam[J]. Opt Lett, 2013, 38(16): 2957–2960. doi: 10.1364/OL.38.002957

    [66]

    Gan Z S, Cao Y Y, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nat Commun, 2013, 4: 2061. doi: 10.1038/ncomms3061

    [67]

    Yu A P, Chen G, Zhang Z H, et al. Creation of sub-diffraction longitudinally polarized spot by focusing radially polarized light with binary phase lens[J]. Sci Rep, 2016, 6: 38859. doi: 10.1038/srep38859

    [68]

    Chen G, Wu Z X, Yu A P, et al. Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave[J]. Sci Rep, 2016, 6: 37776. doi: 10.1038/srep37776

    [69]

    Wu Z X, Jin Q J, Zhang K, et al. Binary-amplitude modulation based super-oscillatory focusing planar lens for azimuthally polarized wave[J]. Opto-Electron Eng, 2018, 45(4): 170660.

    [70]

    Chen G, Wu Z X, Yu A P, et al. Planar binary-phase lens for super-oscillatory optical hollow needles[J]. Sci Rep, 2017, 7(1): 4697. doi: 10.1038/s41598-017-05060-2

    [71]

    Wu Z X, Jin Q J, Zhang S, et al. Generating a three-dimensional hollow spot with sub-diffraction transverse size by a focused cylindrical vector wave[J]. Opt Express, 2018, 26(7): 7866–7875. doi: 10.1364/OE.26.007866

    [72]

    Wu Z X, Zhang Q, Jiang X, et al. Broadband integrated metalens for creating super-oscillation 3D hollow spot by independent control of azimuthally and radially polarized waves[J]. J Phys D Appl Phy, 2019, 52(41): 415103. doi: 10.1088/1361-6463/ab3210

    [73]

    Zuo R Z, Liu W W, Cheng H, et al. Breaking the diffraction limit with radially polarized light based on dielectric metalenses[J]. Adv Opt Mater, 2018, 6(21): 1800795. doi: 10.1002/adom.201800795

    [74]

    Li Y Y, Cao L Y, Wen Z Q, et al. Broadband quarter-wave birefringent meta-mirrors for generating sub-diffraction vector fields[J]. Opt Lett, 2019, 44(1): 110–113. doi: 10.1364/OL.44.000110

    [75]

    Wu Z X, Dong F L, Zhang S, et al. Broadband dielectric metalens for polarization manipulating and superoscillation focusing of visible light[J]. ACS Photonics, 2020, 7(1): 180–189. doi: 10.1021/acsphotonics.9b01356

    [76]

    Zhang Z X, Li Z Y, Lei J, et al. Environmentally robust immersion supercritical lens with an invariable sub-diffraction-limited focal spot[J]. Opt Lett, 2021, 46(10): 2296–2299. doi: 10.1364/OL.425361

    [77]

    Hu Y W, Wang S W, Jia J H, et al. Optical superoscillatory waves without side lobes along a symmetric cut[J]. Adv Photonics, 2021, 3(4): 045002.

    [78]

    Chen H, Wu Z X, Li Z Y, et al. Sub-wavelength tight-focusing of terahertz waves by polarization-independent high-numerical-aperture dielectric metalens[J]. Opt Express, 2018, 26(23): 29817–29825. doi: 10.1364/OE.26.029817

    [79]

    Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam[J]. Phys Rev Lett, 2003, 91(23): 233901. doi: 10.1103/PhysRevLett.91.233901

    [80]

    Kitamura K, Sakai K, Noda S. Finite-difference time-domain (FDTD) analysis on the interaction between a metal block and a radially polarized focused beam[J]. Opt Express, 2011, 19(15): 13750–13756. doi: 10.1364/OE.19.013750

    [81]

    Yang L X, Xie X S, Wang S C, et al. Minimized spot of annular radially polarized focusing beam[J]. Opt Lett, 2013, 38(8): 1331–1333. doi: 10.1364/OL.38.001331

    [82]

    Born M, Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light[M]. New York: Cambridge University Press, 1999.

    [83]

    Novotny L, Hecht B. Principles of Nano-Optics[M]. 2nd ed. Cambridge: Cambridge University Press, 2012.

    [84]

    Baumgartl J, Kosmeier S, Mazilu M, et al. Far field subwavelength focusing using optical eigenmodes[J]. Appl Phys Lett, 2011, 98(18): 181109. doi: 10.1063/1.3587636

    [85]

    Ecoffey C, Grosjean T. Far-field mapping of the longitudinal magnetic and electric optical fields[J]. Opt Lett, 2013, 38(23): 4974–4977. doi: 10.1364/OL.38.004974

    [86]

    Liu T, Yang S M, Jiang Z D. Electromagnetic exploration of far-field super-focusing nanostructured metasurfaces[J]. Opt Express, 2016, 24(15): 16297–16308. doi: 10.1364/OE.24.016297

    [87]

    Gao J, Yan S K, Zhou Y, et al. Polarization-conversion microscopy for imaging the vectorial polarization distribution in focused light[J]. Optica, 2021, 8(7): 984–994. doi: 10.1364/OPTICA.422836

    [88]

    Rogers E T F, Lindberg J, Roy T, et al. A super-oscillatory lens optical microscope for subwavelength imaging[J]. Nat Mater, 2012, 11(5): 432–435. doi: 10.1038/nmat3280

    [89]

    Qin F, Huang K, Wu J F, et al. A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance[J]. Adv Mater, 2016, 29(8): 1602721.

    [90]

    Matsunaga D, Kozawa Y, Sato S. Super-oscillation by higher-order radially polarized Laguerre-Gaussian beams[C]//Proceedings of 2016 Conference on Lasers and Electro-Optics, 2016.

    [91]

    Wang C T, Tang D L, Wang Y Q, et al. Super-resolution optical telescopes with local light diffraction shrinkage[J]. Sci Rep, 2015, 5: 18485. doi: 10.1038/srep18485

    [92]

    Rogers K S, Bourdakos K N, Yuan G H, et al. Optimising superoscillatory spots for far-field super-resolution imaging[J]. Opt Express, 2018, 26(7): 8095–8112. doi: 10.1364/OE.26.008095

    [93]

    Karoui A, Moumni T. Spectral analysis of the finite Hankel transform and circular prolate spheroidal wave functions[J]. J Comput Appl Math, 2009, 233(2): 315–333. doi: 10.1016/j.cam.2009.07.037

    [94]

    Yuan G H, Rogers K S, Rogers E T F, et al. Far-field superoscillatory metamaterial superlens[J]. Phys Rev Appl, 2019, 11(6): 064016. doi: 10.1103/PhysRevApplied.11.064016

    [95]

    Rogers E T F, Quraishe S, Chad J E, et al. New super-oscillatory technology for unlabelled super-resolution cellular imaging with polarisation contrast[J]. Biophys J, 2017, 112(3): 186A.

    [96]

    Rogers E T F, Quraishe S, Rogers K S, et al. Far-field unlabeled super-resolution imaging with superoscillatory illumination[J]. APL Photonics, 2020, 5(6): 066107. doi: 10.1063/1.5144918

    [97]

    Le Gratiet A, Dubreuil M, Rivet S, et al. Scanning Mueller polarimetric microscopy[J]. Opt Lett, 2016, 41(18): 4336–4339. doi: 10.1364/OL.41.004336

    [98]

    Mehta S B, Shribak M, Oldenbourg R. Polarized light imaging of birefringence and diattenuation at high resolution and high sensitivity[J]. J Opt, 2013, 15(9): 094007. doi: 10.1088/2040-8978/15/9/094007

    [99]

    Li W L, He P, Yuan W Z, et al. Efficiency-enhanced and sidelobe-suppressed super-oscillatory lenses for sub-diffraction-limit fluorescence imaging with ultralong working distance[J]. Nanoscale, 2020, 12(13): 7063–7071. doi: 10.1039/C9NR10697A

    [100]

    Yuan G H, Zheludev N I. Detecting nanometric displacements with optical ruler metrology[J]. Science, 2019, 364(6442): 771–775. doi: 10.1126/science.aaw7840

    [101]

    Yuan G H, Rogers E T F, Zheludev N I. "Plasmonics" in free space: observation of giant wavevectors, vortices, and energy backflow in superoscillatory optical fields[J]. Light Sci Appl, 2019, 8: 2. doi: 10.1038/s41377-018-0112-z

  • 加载中

(9)

计量
  • 文章访问数:  11223
  • PDF下载数:  2913
  • 施引文献:  0
出版历程
收稿日期:  2021-11-18
修回日期:  2021-12-09
刊出日期:  2021-12-30

目录

/

返回文章
返回