空间相机大长宽比平面反射镜结构设计

袁健,张雷,裴思宇,等. 空间相机大长宽比平面反射镜结构设计[J]. 光电工程,2025,52(5): 250006. doi: 10.12086/oee.2025.250006
引用本文: 袁健,张雷,裴思宇,等. 空间相机大长宽比平面反射镜结构设计[J]. 光电工程,2025,52(5): 250006. doi: 10.12086/oee.2025.250006
Yuan J, Zhang L, Pei S Y, et al. Structure design of flat mirror with large aspect ratio for space camera[J]. Opto-Electron Eng, 2025, 52(5): 250006. doi: 10.12086/oee.2025.250006
Citation: Yuan J, Zhang L, Pei S Y, et al. Structure design of flat mirror with large aspect ratio for space camera[J]. Opto-Electron Eng, 2025, 52(5): 250006. doi: 10.12086/oee.2025.250006

空间相机大长宽比平面反射镜结构设计

  • 基金项目:
    吉林省科技发展计划项目(20210509052RQ)
详细信息
    作者简介:
    *通讯作者: 张雷,zhanglei@jl1.cn。
  • 中图分类号: V447.1

  • CSTR: 32245.14.oee.2025.250006

Structure design of flat mirror with large aspect ratio for space camera

  • Fund Project: Jilin Province Science and Technology Development Plan Project (20210509052RQ)
More Information
  • 具备大长宽比、高轻量化率特征的平面反射镜是大型离轴三反相机光机结构的研制难点,针对某通光口径为1220 mm×198 mm的平面反射镜,提出一种使用半封闭式碳化硅镜体并配合背部三点支撑形式的组件方案,质量仅为30.5 kg。通过优化支撑点位置,改善镜体支撑效果。调整柔性支撑中铰链的尺寸和位置,兼顾组件的自重变形、热稳定性及动力学特性。仿真分析结果表明,平面反射镜在检测重力工况中的面形精度变化均方根(RMS)为1.812 nm、倾角为3.639″。实测组件基础频率为132.5 Hz,经抛光后,测得平面反射镜左、中、右各子区域的面形精度RMS值分别为0.0203λ、0.0197λ、0.0204λ (λ=632.8 nm),且在环境试验前后保持稳定,可满足高性能空间相机的使用需求。

  • 加载中
  • 图 1  大型离轴三反相机中的平面镜组件

    Figure 1.  Flat mirror assembly in large off-axis TMA camera

    图 2  镜体轻量化结构

    Figure 2.  Lightweight structure of mirror blank

    图 3  镜体支撑点间相对位置

    Figure 3.  Relative position between supports of mirror

    图 4  背部三点支撑位置对镜体自重变形的影响。(a) δy=50 mm;(b) δy=80 mm;(c) δy=110 mm

    Figure 4.  Influence of three-point back support position on gravitational deformation of mirror. (a) δy=50 mm; (b) δy=80 mm; (c) δy=110 mm

    图 5  典型支撑位置下的平面镜自重变形。(a) Dx=610 mm;(b) Dx=650 mm;(c) Dx=690 mm

    Figure 5.  Gravitational deformation of flat mirror under typical support positions. (a) Dx=610 mm; (b) Dx=650 mm; (c) Dx=690 mm

    图 6  平面镜背部三点支撑结构。(a)装配关系;(b)组件实物

    Figure 6.  Back three-point support structure for flat mirror. (a) Assembly relationship; (b) Component physical object

    图 7  双轴正交铰链式柔性支撑。(a)主要柔性参数;(b)铰链结构参数优化;(c)铰链位置与镜体变形的关系

    Figure 7.  Flexure support with biaxial orthogonal hinge. (a) Main flexure parameters; (b) Optimization of hinge structure parameters; (c) Relation between hinge position and mirror deformation

    图 8  典型工况下镜面变形拟合云图。(a) 1 G, -Y向重力;(b) 4 ℃温度变化;(c) 0.02 mm不平度;(d)复合工况

    Figure 8.  Fitting nephograms of mirror deformation under typical conditions. (a) 1 G, -Y gravity; (b) 4 ℃ temperature change; (c) 0.02 mm forced displacement; (d) Compound

    图 9  平面镜组件一阶振型

    Figure 9.  First order vibration mode of flat mirror assembly

    图 10  平面镜面形精度检测。(a) 反射面分区示意图;(b) 大口径干涉仪检测现场

    Figure 10.  Surface accuracy test of flat mirror. (a) Schematic of surface zoning; (b) Test scene using large aperture interferometer

    图 11  平面镜分区面形云图。(a) 左侧,RMS为0.0203λ;(b) 中部,RMS为0.0197λ;(c) 右侧,RMS为0.0204λ

    Figure 11.  Zonal surface nephograms of flat mirror. (a) Left, RMS of 0.0203λ; (b) Middle, RMS of 0.0197λ; (c) Right, RMS of 0.0204λ

    表 1  平面镜组件主要设计指标

    Table 1.  Main design metrics for flat mirror assembly

    No. Item Requirement
    1 Clear aperture 1220 mm×198 mm
    2 Testing attitude Optical axis horizontal
    3 Gravitational deformation Tilt: θM≤10″
    4 Working temperature (20±4) ℃
    5 Surface accuracy RMS≤1/50λ over sub-aperture of φ140 mm (λ=632.8 nm)
    6 Mass ≤40 kg
    7 Frequency ≥100 Hz
    下载: 导出CSV

    表 2  主要可见光波段空间反射镜材料属性

    Table 2.  Properties of spatial reflector materials in main visible light band

    Property SiC ULE Zerodur
    Density ρ/(kg·m−3) 3050 2210 2530
    Elastic modulus E/Gpa 340 67 91
    Specific stiffness E/ρ 111.5 30.3 36
    Thermal conductivity λ1/(W·K−1·m−1) 155 1.31 1.64
    Thermal expansion coefficient α/(10−6·K−1) 2.50 0.03 0.05
    Thermal stability λ1/α 62 43.7 32.8
    下载: 导出CSV

    表 3  主要零件材料及其物理属性

    Table 3.  Main parts materials and their physical properties

    Parameter Main parts material
    Mirror Cone Flexure Base
    Material SiC Invar TC4 SiC/Al
    Density ρ/(kg·m−3) 3050 8100 4400 3000
    Elastic modulus E/Gpa 340 141 114 180
    Poisson ratio μ 0.27 0.25 0.34 0.18
    Thermal expansion coefficient α/(10−6·K−1) 2.5 2.5 9.1 8.4
    下载: 导出CSV

    表 4  典型工况下平面镜组件变形数据

    Table 4.  Deformation data of the flat mirror assembly under typical conditions

    Typical condition RMS/nm θX/″
    Condition 1 Gravity/(1 G, −Y) 1.812 3.639
    Condition 2 Temperature change/4 ${}^ \circ {\mathrm{C}} $ 3.302 /
    Condition 3 Forced displacement/0.02 mm 0.948 /
    Condition 1+2+3 Compound 5.044 /
    Requirement ≤1/50λ (λ=632.8 nm) ≤10″
    下载: 导出CSV

    表 5  平面镜组件模态分析结果

    Table 5.  Modal analysis results of flat mirror assembly

    No.Frequency/HzVibration mode
    1129.1Mirror rotation around Y-axis
    2134.6Mirror rotation around X-axis
    3174.9Mirror rotation around Z-axis
    4178.5Mirror translation along Y-axis
    5193.3Mirror translation along X-axis
    6201.5Mirror translation along Z-axis
    下载: 导出CSV

    表 6  翻转前后平面镜面形精度数据

    Table 6.  Surface accuracy data of flat mirror before and after overturn

    Zone RMS/λ
    Left Before 0.0203
    After 0.0213
    Middle Before 0.0197
    After 0.0204
    Right Before 0.0204
    After 0.0207
    下载: 导出CSV
  • [1]

    蒋成斌, 陈智利, 王肖同, 等. 紧凑式离轴三反光学系统设计[J]. 光电工程, 2023, 50(12): 230231. doi: 10.12086/oee.2023.230231

    Jiang C B, Chen Z L, Wang X T, et al. Design of compact off-axis triple mirror optical system[J]. Opto-Electron Eng, 2023, 50(12): 230231. doi: 10.12086/oee.2023.230231

    [2]

    王朋朋, 辛宏伟, 朱俊青, 等. 轻质长条形反射镜结构优化设计[J]. 光电工程, 2020, 47(8): 200109. doi: 10.12086/oee.2020.200109

    Wang P P, Xin H W, Zhu J Q, et al. Structural optimization design of lightweight rectangular reflective mirror[J]. Opto-Electron Eng, 2020, 47(8): 200109. doi: 10.12086/oee.2020.200109

    [3]

    袁健, 张雷. 大型离轴三反相机主镜组件结构设计与验证[J]. 红外与激光工程, 2023, 52(1): 20220363. doi: 10.3788/IRLA20220363

    Yuan J, Zhang L. Structure design and verification of primary mirror assembly for large off-axis TMA camera[J]. Infrared Laser Eng, 2023, 52(1): 20220363. doi: 10.3788/IRLA20220363

    [4]

    武红宇, 白杨, 王灵丽, 等. 吉林一号宽幅01星宽幅相机在轨几何定标及精度验证[J]. 光学 精密工程, 2021, 29(8): 1769−1781. doi: 10.37188/OPE.20212908.1769

    Wu H Y, Bai Y, Wang L L, et al. On-orbit geometric calibration and accuracy verification of Jilin1-KF01A WF camera[J]. Opt Precis Eng, 2021, 29(8): 1769−1781. doi: 10.37188/OPE.20212908.1769

    [5]

    袁健, 张雷. 新型中小口径反射镜消热刚性支撑结构设计[J]. 激光与光电子学进展, 2024, 61(5): 0522005. doi: 10.3788/LOP222590

    Yuan J, Zhang L. Novel design of athermal and rigid support structure for small- and medium-aperture mirrors[J]. Laser Optoelectron Prog, 2024, 61(5): 0522005. doi: 10.3788/LOP222590

    [6]

    宋伟阳, 解鹏, 王循. 大型空间离轴三反相机分体支撑结构设计[J]. 光学 精密工程, 2021, 29(3): 571−581. doi: 10.37188/OPE.20212903.0571

    Song W Y, Xie P, Wang X. Design of lightweight split support structure for large space off-axis three mirror camera[J]. Opt Precis Eng, 2021, 29(3): 571−581. doi: 10.37188/OPE.20212903.0571

    [7]

    李宗轩, 张昌昊, 张德福, 等. 1.8 m空间长条反射镜柔性支撑技术研究[J]. 中国光学, 2022, 15(5): 1079−1091. doi: 10.37188/CO.2022-0131

    Li Z X, Zhang C H, Zhang D F, et al. Flexural mounting technology of a 1.8 m space-borne rectangular mirror[J]. Chin Opt, 2022, 15(5): 1079−1091. doi: 10.37188/CO.2022-0131

    [8]

    曲慧东, 魏加立, 董得义, 等. 长条形空间反射镜组件轻量化结构设计[J]. 红外与激光工程, 2021, 50(6): 20200404. doi: 10.3788/IRLA20200404

    Qu H D, Wei J L, Dong D Y, et al. Lightweight structural design of rectangular space mirror assembly[J]. Infrared Laser Eng, 2021, 50(6): 20200404. doi: 10.3788/IRLA20200404

    [9]

    刘朋朋, 吴俊, 常君磊, 等. 长条镜柔性支撑及点阵结构设计方法[J]. 光学学报, 2024, 44(2): 0222002. doi: 10.3788/AOS231368

    Liu P P, Wu J, Chang J L, et al. Design method of flexible support and lattice structure for long strip mirror[J]. Acta Optica Sin, 2024, 44(2): 0222002. doi: 10.3788/AOS231368

    [10]

    龙荃, 李宗轩, 张德福, 等. 1.8 m长条形轻质SiC反射镜支撑位置设计[J]. 光学学报, 2024, 44(13): 1322004. doi: 10.3788/AOS240445

    Long Q, Li Z X, Zhang D F, et al. Support position design of 1.8 m rectangular light-weight SiC mirror[J]. Acta Optica Sin, 2024, 44(13): 1322004. doi: 10.3788/AOS240445

    [11]

    陈太喜, 伍雁雄, 宋绍漫, 等. 折叠式离轴三反光学系统设计与装调[J]. 激光与光电子学进展, 2021, 58(17): 1722001. doi: 10.3788/LOP202158.1722001

    Chen T X, Wu Y X, Song S M, et al. Design and alignment of folded off-axis three-mirror optical system[J]. Laser Optoelectron Prog, 2021, 58(17): 1722001. doi: 10.3788/LOP202158.1722001

    [12]

    Wei L, Zhang L, Gong X X, et al. Design and optimization for main support structure of a large-area off-axis three-mirror space camera[J]. Appl Opt, 2017, 56(4): 1094−1100. doi: 10.1364/AO.56.001094

    [13]

    袁健, 张雷, 姜启福, 等. 1.2 m高轻量化率主反射镜镜坯结构设计[J]. 光电工程, 2023, 50(4): 220225. doi: 10.12086/oee.2023.220225

    Yuan J, Zhang L, Jiang Q F, et al. Structure design of 1.2 m high lightweight primary mirror blank[J]. Opto-Electron Eng, 2023, 50(4): 220225. doi: 10.12086/oee.2023.220225

    [14]

    朱俊青, 沙巍, 陈长征, 等. 空间长条形反射镜背部三支撑点的设置[J]. 光学 精密工程, 2015, 23(9): 2562−2569. doi: 10.3788/OPE.20152309.2562

    Zhu J Q, Sha W, Chen C Z, et al. Position layout of rear three point mounting for space rectangular mirror[J]. Opt Precis Eng, 2015, 23(9): 2562−2569. doi: 10.3788/OPE.20152309.2562

    [15]

    李延伟, 张景国, 谢新旺, 等. 大口径矩形SiC扫描反射镜组件的设计[J]. 激光与光电子学进展, 2022, 59(5): 0522001. doi: 10.3788/LOP202259.0522001

    Li Y W, Zhang J G, Xie X W, et al. Design of large-aperture rectangular SiC scanning mirror assembly[J]. Laser Optoelectron Prog, 2022, 59(5): 0522001. doi: 10.3788/LOP202259.0522001

  • 加载中

(12)

(6)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2025-01-08
修回日期:  2025-03-19
录用日期:  2025-03-24
刊出日期:  2025-05-30

目录

/

返回文章
返回