All-dielectric terahertz metasurface based on bound states in the continuum and the research of its equivalent parameter
-
摘要
本研究提出了一种基于连续域束缚态(bound states in the continuum, BIC)的全介质太赫兹超表面。超表面的每个结构单元由两个横截面为正方形的矩形块和衬底组成。衬底材料为石英,表面矩形块材料为无折射率损耗的硅。矩形块横截面面积的改变破坏了超表面的对称性,激发了准BIC,得到了具有极窄线宽的谐振。采用有限元方法(finite element method, FEM)和控制变量法研究了不同非对称参数、结构参数和材料参数下的透射光谱。同时,对所提出的超表面的
Q 值进行了计算,其Q 值可达1.1006×104,高于列出的相关文献中的Q 值。此外,该研究针对目前对全介质超表面等效参数的研究相对较少的局限性,利用S 参数提取法计算并分析了所提出的超表面的等效参数,并从该角度初步研究了超表面的物理性质。Abstract
In this research, an all-dielectric terahertz metasurface based on bound states in the continuum (BIC) is proposed. Each structural unit of the metasurface consists of two rectangle blocks with square cross-sections and a substrate. The substrate material is quartz, and the rectangle block material of the surface is lossless silicon. The symmetry of the metasurface is broken by tchanging the cross-section area of the rectangle block, and the quasi-BIC is excited. The resonance with extremely narrow linewidth is obtained. The transmission spectra with different asymmetric, structural and material parameters are studied using finite element method (FEM) and control variable method. Meanwhile, the
Q factor of the proposed metasurface is calculated, which can reach 1.1006×104 and is higher than theQ factors from related listed references. In addition, this study is aimed at the limitations of the relatively limited research on the equivalent parameters of all-dielectric metasurfaces, theS -parameter extraction method is utilized to calculate and analyze the equivalent parameters of the proposed metasurface and the physical properties of the metasurface is studied from this perspective preliminarily. -
Overview
Overview: In this research, an all-dielectric terahertz metasurface based on bound states in the continuum (BIC) is proposed. Each structural unit of the metasurface consists of two rectangle blocks with square cross-sections and a substrate. The asymmetric parameter Δw is defined as the reduction in edge length. The substrate material is quartz with a refractive index of 1.48, and the rectangular block material is silicon with a refractive index of 3.48 and no loss. The symmetry of the metasurface is broken by changing the cross-section area of the rectangle block, and the quasi-BIC is excited. The resonance with extremely narrow linewidth is obtained. The transmission spectra obtained from incident waves with different polarizations indicate that the resonance characteristics of the metasurface are significantly different under the two polarization modes, demonstrating its polarization dependence.
To study the resonance mechanism at the resonance frequency and gain a deeper understanding of the characteristics and behavior of the electric and magnetic fields, multipole decomposition is performed in Cartesian coordinates. At 1.6922 THz, the toroidal dipole (TD) dominates and the electric quadrupole (Qe) is suppressed, therefore the resonance type here is TD resonance. At 1.7611 THz, Qe dominates and TD is suppressed, therefore the resonance type here belongs to Qe resonance. The transmission spectra with different asymmetric , structural and material parameters are studied by using finite element method (FEM) and control variable method. Meanwhile, the Q factor of the proposed metasurface is calculated, which can reach 1.1006×104. From the table, compared to the metasurfaces listed in other literature, the proposed metasurface achieves a higher Q value. In addition, under the selected conditions, as the absolute value of Δw increases, the Q value decreases significantly. That is, under certain conditions, the Q value has an inverse quadratic relationship with the asymmetric parameter Δw, satisfying the equation Q ∝ Δw−2. At the same time, it can be seen that the closer the absolute value of Δw is to zero, the more the obtained Q value tends to infinity, which is in line with QBIC characteristics. In addition, this study is aimed at the limitations of the relatively limited research on the equivalent parameters of all-dielectric metasurfaces, the S-parameter extraction method is utilized to calculate and analyze the equivalent parameters of the proposed metasurface and the physical properties of the metasurface is studied from this perspective preliminarily.
-
-
图 5 1.6922 THz与1.7611 THz处的位移电流密度、磁场分布与电场分布。(a) 1.6922 THz处位移电流密度;(b) 1.6922 THz处的电场;(c) 1.6922 THz处的磁场;(d) 1.7611 THz处移位电流密度;(e) 1.7611 THz处的电场;(f) 1.7611 THz处的磁场
Figure 5. Displacement current density, magnetic field distribution and electric field distribution at 1.6922 THz and 1.7611 THz. (a) The displacement current density at 1.6922 THz; (b) The electric field distribution at 1.6922 THz; (c) The magnetic field distribution at 1.6922 THz; (d) The displacement current density at 1.7611 THz; (e) The electric field distribution at 1.7611 THz; (f) The magnetic field distribution at 1.7611 THz
表 1 不同文献中的Q值对比
Table 1. Comparison of Q values in different references
-
参考文献
[1] 王家伟, 李珂, 成茗, 等. 动态可调谐超表面的研究进展与应用[J]. 光电工程, 2023, 50(8): 230141. doi: 10.12086/oee.2023.230141
Wang J W, Li K, Cheng M, et al. Research progress and applications of dynamically tunable metasurfaces[J]. Opto-Electron Eng, 2023, 50(8): 230141. doi: 10.12086/oee.2023.230141
[2] 邓洪朗, 周绍林, 岑冠廷. 红外和太赫兹电磁吸收超表面研究进展[J]. 光电工程, 2019, 46(8): 180666. doi: 10.12086/oee.2019.180666
xDeng H L, Zhou S L, Cen G L. Progress on infrared and terahertz electro-magnetic absorptive metasurface[J]. Opto-Electron Eng, 2019, 46(8): 180666. doi: 10.12086/oee.2019.180666
[3] Yang R S, Lou J, Zhang F L, et al. Active control of terahertz toroidal excitations in a hybrid metasurface with an electrically biased silicon layer[J]. Adv Photonics Res, 2021, 2(12): 2100103. doi: 10.1002/adpr.202100103
[4] Yang R S, Fan Y C, Zhu W, et al. Terahertz silicon metagratings: high-efficiency dispersive beam manipulation above diffraction cone[J]. Laser Photonics Rev, 2023, 17(7): 2200975. doi: 10.1002/lpor.202200975
[5] Li J, Li J T, Yue Z, et al. Structured vector field manipulation of terahertz wave along the propagation direction based on dielectric metasurfaces[J]. Laser Photonics Rev, 2022, 16(12): 2200325. doi: 10.1002/lpor.202200325
[6] Li J, Lu X G, Li H, et al. Racemic dielectric metasurfaces for arbitrary terahertz polarization rotation and wavefront manipulation[J]. Opto-Electron Adv, 2024, 7(10): 240075. doi: 10.29026/oea.2024.240075
[7] 王鹏飞, 贺风艳, 刘建军, 等. 基于连续谱束缚态的高Q太赫兹全介质超表面[J]. 激光技术, 2022, 46(5): 630−635. doi: 10.7510/jgjs.issn.1001-3806.2022.05.008
Wang P F, He F Y, Liu J J, et al. High-Q terahertz all-dielectric metasurface based on bound states in the continuum[J]. Laser Technol, 2022, 46(5): 630−635. doi: 10.7510/jgjs.issn.1001-3806.2022.05.008
[8] Gao J X, Liu H, Zhang M, et al. Dynamic switching between bound states in the continuum (BIC) and quasi-BIC based on a Dirac semimetal terahertz metasurface[J]. Phys Chem Chem Phys, 2022, 24(41): 25571−25579. doi: 10.1039/D2CP03248A
[9] Chen X, Fan W H, Yan H. Toroidal dipole bound states in the continuum metasurfaces for terahertz nanofilm sensing[J]. Opt Express, 2020, 28(11): 17102−17112. doi: 10.1364/OE.394416
[10] Zhang X Y, Shi W Q, Gu J Q, et al. Terahertz metasurface with multiple BICs/QBICs based on a split ring resonator[J]. Opt Express, 2022, 30(16): 29088−29098. doi: 10.1364/OE.462247
[11] Wang L, Zhao Z Y, Du M J, et al. Tuning symmetry-protected quasi bound state in the continuum using terahertz meta-atoms of rotational and reflectional symmetry[J]. Opt Express, 2022, 30(13): 23631−23639. doi: 10.1364/OE.454739
[12] Han S, Cong L Q, Srivastava Y K, et al. All-dielectric active terahertz photonics driven by bound states in the continuum[J]. Adv Mater, 2019, 31(37): 1901921. doi: 10.1002/adma.201901921
[13] Wang Y L, Han Z H, Du Y, et al. Ultrasensitive terahertz sensing with high-Q toroidal dipole resonance governed by bound states in the continuum in all-dielectric metasurface[J]. Nanophotonics, 2021, 10(4): 1295−1307. doi: 10.1515/nanoph-2020-0582
[14] Cen W Y, Lang T T, Wang J F, et al. High-Q Fano Terahertz resonance based on bound states in the continuum in all-dielectric metasurface[J]. Appl Surf Sci, 2022, 575: 151723. doi: 10.1016/j.apsusc.2021.151723
[15] Song F H, Xiao B G, Qin J Y. High-Q multiple Fano resonances with near-unity modulation depth governed by nonradiative modes in all-dielectric terahertz metasurfaces[J]. Opt Express, 2023, 31(3): 4932−4941. doi: 10.1364/OE.481328
[16] Kaelberer T, Fedotov V A, Papasimakis N, et al. Toroidal dipolar response in a metamaterial[J]. Science, 2010, 330(6010): 1510−1512. doi: 10.1126/science.1197172
[17] Zhao R Q, Feng Y, Ling H T, et al. Enhanced terahertz fingerprint sensing mechanism study of tiny molecules based on tunable spoof surface plasmon polaritons on composite periodic groove structures[J]. Sensors, 2023, 23(5): 2496. doi: 10.3390/s23052496
[18] Srivastava Y K, Ako R T, Gupta M, et al. Terahertz sensing of 7 nm dielectric film with bound states in the continuum metasurfaces[J]. Appl Phys Lett, 2019, 115(15): 151105. doi: 10.1063/1.5110383
[19] Zhong Y J, Du L H, Liu Q, et al. Ultrasensitive specific sensor based on all-dielectric metasurfaces in the terahertz range[J]. RSC Adv, 2020, 10(55): 33018−33025. doi: 10.1039/D0RA06463G
[20] Sang T, Dereshgi S A, Hadibrata W, et al. Highly efficient light absorption of monolayer graphene by quasi-bound state in the continuum[J]. Nanomaterials (Basel), 2021, 11(2): 484. doi: 10.3390/nano11020484
[21] Liu Z Z, Wang L Y, Hua M, et al. High-Q metamaterials based on cavity mode resonance for THz sensing applications[J]. AIP Adv, 2020, 10(7): 075014. doi: 10.1063/5.0007590
[22] Tan T C, Srivastava Y K, Ako R T, et al. Active control of nanodielectric-induced THz quasi-BIC in flexible metasurfaces: a platform for modulation and sensing[J]. Adv Mater, 2021, 33(27): 2100836. doi: 10.1002/adma.202100836
[23] Zhang D P, Li Z, Fan K F, et al. Dynamically tunable terahertz metamaterial sensor based on metal–graphene hybrid structural unit[J]. AIP Adv, 2022, 12(2): 025206. doi: 10.1063/5.0079964
[24] Wang M, Zhao X, Zhao R Q, et al. Dual resonance based on quasi-bound states in continuum in the all-dielectric terahertz metasurface and its application in sensing[J]. Results Phys, 2023, 49: 106518. doi: 10.1016/j.rinp.2023.106518
[25] Li K, Zhao X, Wang M, et al. All-dielectric terahertz metasurface governed by bound states in the continuum with high-Q factor[J]. J China Univ Posts Telecommun, 2024, 31(2): 44−54. doi: 10.19682/j.cnki.1005-8885.2024.0003
-
访问统计