复杂背景下的轻量级遥感军用飞机目标检测

周韩莲,叶青,刘文祺. 复杂背景下的轻量级遥感军用飞机目标检测[J]. 光电工程,2025,52(2): 240270. doi: 10.12086/oee.2025.240270
引用本文: 周韩莲,叶青,刘文祺. 复杂背景下的轻量级遥感军用飞机目标检测[J]. 光电工程,2025,52(2): 240270. doi: 10.12086/oee.2025.240270
Zhou H L, Ye Q, Liu W Q. Lightweight remote sensing military aircraft target detection in complex backgrounds[J]. Opto-Electron Eng, 2025, 52(2): 240270. doi: 10.12086/oee.2025.240270
Citation: Zhou H L, Ye Q, Liu W Q. Lightweight remote sensing military aircraft target detection in complex backgrounds[J]. Opto-Electron Eng, 2025, 52(2): 240270. doi: 10.12086/oee.2025.240270

复杂背景下的轻量级遥感军用飞机目标检测

  • 基金项目:
    国家自然科学基金项目(62006028);湖北省自然科学基金项目(2023AFB909)
详细信息

Lightweight remote sensing military aircraft target detection in complex backgrounds

  • Fund Project: National Natural Science Foundation of China (62006028), Hubei Provincial Natural Science Foundation of China (2023AFB909)
More Information
  • 针对遥感图像军用飞机中背景复杂、目标尺度小所导致的识别精度低、计算成本高、模型体积大等问题,提出一种融合重参数化和细节增强的轻量级军用飞机目标检测算法YOLOv8-MA。首先,融合重参数化设计多分支梯度流通特征提取模块,提高模型推理速度;其次,结合Efficient RepGFPN舍弃冗余模型结构,融入P2层,构建多尺度特征融合网络,改善因过多下采样带来的小目标信息丢失问题;在此之上,结合群范卷积和细节增强提出轻量级检测头,减少模型参数量和计算量;最后,向Shape-IoU中引入聚焦系数融合成新的损失函数,提升模型检测性能。在公开军用飞机数据集MAR20上,该算法的mAP50高达97.9%,模型体积低至2.1 MB,相较于YOLOv8n参数量下降了74.7%,计算量下降了40.7%,FPS提高了14 f/s,证明其能够有效提升遥感图像中军用飞机的检测效果。

  • 加载中
  • 图 1  YOLOv8-MA整体结构

    Figure 1.  Overall structure of YOLOv8-MA

    图 2  C2f和RGCE的结构。(a) C2f;(b) RGCE

    Figure 2.  Structure of C2f and RGCE. (a) C2f; (b) RGCE

    图 3  重参数化过程

    Figure 3.  Reparameterization process

    图 4  Efficient RepGFPN的整体结构

    Figure 4.  Overall structure of Efficient RepGFPN

    图 5  CSPStage结构

    Figure 5.  Structure of CSPStage

    图 6  LSDEHead结构

    Figure 6.  Structure of LSDEHead

    图 7  DEConv计算过程

    Figure 7.  Calculation process of the DEConv

    图 8  损失函数Box_loss对比

    Figure 8.  Loss function Box_loss comparison

    图 9  数据集相关情况

    Figure 9.  Dataset relevance

    图 10  不同模型的实验结果

    Figure 10.  Experimental results of different models

    图 11  可视化结果对比

    Figure 11.  Visualization of comparison results

    表 1  检测头参数对比

    Table 1.  Comparison of detector head parameters

    ModuleTime/msParams/MGFLOPs
    Detect100.620.382.70
    LSDEHead58.980.280.17
    下载: 导出CSV

    表 2  实验参数设置

    Table 2.  Experimental parameter setting

    ParameterValue
    Img-size640×640
    Batch-size32
    Epochs200
    OptimizerSGD
    lr0.01
    Momentum0.937
    Weight decay0.0005
    Workers2
    Pre-training ptno
    下载: 导出CSV

    表 3  消融实验结果

    Table 3.  Ablation experiment results

    Group RGCE LRepGFPN P2 LSDEHead Wise-ShapeIoU P/% R/% mAP50/% mAP50-95/% Params/M GFLOPs Volume/MB FPS
    A 95.8 94.4 97.4 77.6 3.01 8.1 6.0 78
    B 95.9 94.0 97.2 79.2 2.59 6.9 5.2 87
    C 96.0 94.3 97.3 77.3 1.02 5.9 2.2 74
    D 96.1 94.8 97.3 78.4 1.04 6.1 2.2 78
    E 95.9 94.5 97.3 77.9 0.76 4.8 2.1 92
    F 97.2 95.3 97.9 78.8 0.76 4.8 2.1 92
    下载: 导出CSV

    表 4  不同模块的对比

    Table 4.  Comparison of different modules

    ModuleP/%R/%mAP50/%mAP50-95/%Params/MGFLOPsFPS
    C2f95.894.497.477.63.018.178
    C396.094.196.978.72.486.990
    RepNCSPELAN496.495.397.779.52.206.191
    RGCE96.095.797.778.92.226.1112
    下载: 导出CSV

    表 5  不同损失函数的对比实验结果

    Table 5.  Comparative experimental results of different loss functions

    Loss functionP/%R/%mAP50/%mAP50-95/%
    CIoU95.994.597.377.9
    SIoU96.195.597.279
    Inner-SIoU95.194.597.478
    WIoU V395.395.497.678.2
    Shape-IoU96.396.397.779.2
    Wise-ShapeIoU97.295.397.978.8
    下载: 导出CSV

    表 6  不同模型的性能对比

    Table 6.  Comparison of the performance of different models

    ModuleP/%R/%mAP50/%mAP50-95/%Params/MGFLOPsVolume/MBFPS
    RT-DETR93.193.394.875.728.4100.759.131
    YOLOv5s97.896.497.778.87.1016.414.527
    YOLOv796.395.697.777.836.58103.575.023
    YOLOv7-tiny95.392.997.376.74.8710.111.833
    YOLOv8n95.894.497.477.63.018.16.078
    YOLOv8s96.895.698.179.511.1428.522.569
    YOLO-MAR[14]91.711.33.9
    DTR R-CNN[4]97.377.123.84
    FAS-YOLO[15]97.277.30.895.61.9
    YOLOv9t95.095.397.778.52.6210.75.963
    YOLOv10n95.593.997.577.32.708.35.581
    Ours97.295.397.978.80.764.82.192
    下载: 导出CSV

    表 7  泛化实验结果

    Table 7.  Generalization experimental results

    Dataset Module mAP50/% mAP50-95/% FPS
    MAR20 YOLOv8n 97.4 77.6 78
    YOLOv8-MA 97.9 78.8 92
    CASIA-S YOLOv8n 97.0 88.1 50
    YOLOv8-MA 98.6 89.3 62
    下载: 导出CSV
  • [1]

    禹文奇, 程塨, 王美君, 等. MAR20: 遥感图像军用飞机目标识别数据集[J]. 遥感学报, 2023, 27(12): 2688−2696. doi: 10.11834/jrs.20222139

    Yu W Q, Cheng G, Wang M J, et al. MAR20: a benchmark for military aircraft recognition in remote sensing images[J]. Nat Remote Sens Bull, 2023, 27(12): 2688−2696. doi: 10.11834/jrs.20222139

    [2]

    梁礼明, 陈康泉, 王成斌, 等. 融合视觉中心机制和并行补丁感知的遥感图像检测算法[J]. 光电工程, 2024, 51(7): 240099. doi: 10.12086/oee.2024.240099

    Liang L M, Chen K Q, Wang C B, et al. Remote sensing image detection algorithm integrating visual center mechanism and parallel patch perception[J]. Opto-Electron Eng, 2024, 51(7): 240099. doi: 10.12086/oee.2024.240099

    [3]

    肖振久, 张杰浩, 林渤翰. 特征协同与细粒度感知的遥感图像小目标检测[J]. 光电工程, 2024, 51(6): 240066. doi: 10.12086/oee.2024.240066

    Xiao Z J, Zhang J H, Lin B H. Feature coordination and fine-grained perception of small targets in remote sensing images[J]. Opto-Electron Eng, 2024, 51(6): 240066. doi: 10.12086/oee.2024.240066

    [4]

    党玉龙, 叶成绪. 基于Faster R-CNN的轻量化遥感图像军用飞机检测模型[J]. 激光杂志, 2024, 45(7): 111−117. doi: 10.14016/j.cnki.jgzz.2024.07.111

    Dang Y L, Ye C X. A lightweight remote sensing image military aircraft detection model based on Faster R-CNN[J]. Laser J, 2024, 45(7): 111−117. doi: 10.14016/j.cnki.jgzz.2024.07.111

    [5]

    Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(6): 1137−1149. doi: 10.1109/TPAMI.2016.2577031

    [6]

    沙苗苗, 李宇, 李安. 改进Faster R-CNN的遥感图像多尺度飞机目标检测[J]. 遥感学报, 2022, 26(8): 1624−1635. doi: 10.11834/jrs.20219365

    Sha M M, Li Y, Li A. Multiscale aircraft detection in optical remote sensing imagery based on advanced Faster R-CNN[J]. Nat Remote Sens Bull, 2022, 26(8): 1624−1635. doi: 10.11834/jrs.20219365

    [7]

    刘裕芸, 刘春阳, 周绍鸿, 等. 基于优化Faster-RCNN遥感影像飞机目标检测算法[J/OL]. 机电工程技术, 2024.

    Liu Y Y, Liu C Y, Zhou S H, et al. Aircraft target detection algorithm based on optimized faster RCNN remote sensing images[J/OL]. Mech Electr Eng Technol, 2024. https://doi.org/10.3969/j.issn.1009-9492.2024.00127.

    [8]

    Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with transformers[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, 2020: 213–229. https://doi.org/10.1007/978-3-030-58452-8_13.

    [9]

    党思航, 李晓哲, 夏召强, 等. 采用自适应预筛选的遥感图像目标开集检测研究[J]. 电子与信息学报, 2024, 46(10): 3908−3917. doi: 10.11999/JEIT231426

    Dang S H, Li X Z, Xia Z Q, et al. Research on open-set object detection in remote sensing images based on adaptive pre-screening[J]. J Electron Inf Technol, 2024, 46(10): 3908−3917. doi: 10.11999/JEIT231426

    [10]

    Zhou X Y, Wang D Q, Krähenbühl P. Objects as points[Z]. arXiv: 1904.07850, 2019. https://arxiv.org/abs/1904.07850.

    [11]

    李婕, 周顺, 朱鑫潮, 等. 结合多通道注意力的遥感图像飞机目标检测[J]. 计算机工程与应用, 2022, 58(1): 209−217. doi: 10.3778/j.issn.1002-8331.2107-0379

    Li J, Zhou S, Zhu X C, et al. Remote sensing image aircraft target detection combined with multiple channel attention[J]. Comput Eng Appl, 2022, 58(1): 209−217. doi: 10.3778/j.issn.1002-8331.2107-0379

    [12]

    黄子恒, 芮杰, 林雨准, 等. 基于改进的YOLOv5遥感影像飞机目标检测[J]. 测绘通报, 2024, (8): 73−78,89. doi: 10.13474/j.cnki.11-2246.2024.0813

    Huang Z H, Rui J, Lin Y Z, et al. Aircraft target detection based on improved YOLOv5 in remote sensing imagery[J]. Bull Surv Mapp, 2024, (8): 73−78,89. doi: 10.13474/j.cnki.11-2246.2024.0813

    [13]

    Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the15th European Conference on Computer Vision, Munich, 2018: 3–19. https://doi.org/10.1007/978-3-030-01234-2_1.

    [14]

    王杰, 张上, 张岳, 等. 改进YOLOv5的军事飞机检测算法[J]. 无线电工程, 2024, 54(3): 589−596. doi: 10.3969/j.issn.1003-3106.2024.03.010

    Wang J, Zhang S, Zhang Y, et al. Improved YOLOv5's military aircraft detection algorithm[J]. Radio Eng, 2024, 54(3): 589−596. doi: 10.3969/j.issn.1003-3106.2024.03.010

    [15]

    刘丽, 张硕, 白宇昂, 等. 改进YOLOv8的轻量级军事飞机检测算法[J]. 计算机工程与应用, 2024, 60(18): 114−125. doi: 10.3778/j.issn.1002-8331.2404-0058

    Liu L, Zhang S, Bai Y A, et al. Improved lightweight military aircraft detection algorithm of YOLOv8[J]. Comput Eng Appl, 2024, 60(18): 114−125. doi: 10.3778/j.issn.1002-8331.2404-0058

    [16]

    Xu X Z, Jiang Y Q, Chen W H, et al. Damo-YOLO: a report on real-time object detection design[Z]. arXiv: 2211.15444, 2022. https://arxiv.org/abs/2211.15444.

    [17]

    Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, 2023: 7464–7475. https://doi.org/10.1109/CVPR52729.2023.00721.

    [18]

    He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vega, 2015: 770–778. https://doi.org/10.1109/CVPR.2016.90.

    [19]

    Ding X H, Zhang X Y, Ma N N, et al. RepVGG: making VGG-style ConvNets great again[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, 2021: 13728–13737. https://doi.org/10.1109/CVPR46437.2021.01352.

    [20]

    Han K, Wang Y H, Tian Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 2020: 1577–1586. https://doi.org/10.1109/CVPR42600.2020.00165.

    [21]

    Tian Z, Shen C H, Chen H, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, 2019: 9626–9635. https://doi.org/10.1109/ICCV.2019.00972.

    [22]

    Chen Z X, He Z W, Lu Z M. DEA-Net: single image dehazing based on detail-enhanced convolution and content-guided attention[J]. IEEE Trans Image Process, 2024, 33: 1002−1015. doi: 10.1109/TIP.2024.3354108

    [23]

    Zheng Z H, Wang P, Liu W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence, New York, 2020: 12993–13000. https://doi.org/10.1609/aaai.v34i07.6999.

    [24]

    Zhang H, Zhang S J. Shape-IoU: more accurate metric considering bounding box shape and scale[Z]. arXiv: 2312.17663, 2023. https://arxiv.org/abs/2312.17663.

    [25]

    Tong Z J, Chen Y H, Xu Z W, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[Z]. arXiv: 2301.10051, 2023. https://arxiv.org/abs/2301.10051.

    [26]

    Wang C Y, Yeh I H, Liao H Y M. YOLOv9: learning what you want to learn using programmable gradient information[C]//Proceedings of the18th European Conference on Computer Vision, Milan, 2024: 1–21. https://doi.org/10.1007/978-3-031-72751-1_1.

    [27]

    Gevorgyan Z. SIoU loss: more powerful learning for bounding box regression[Z]. arXiv: 2205.12740, 2022. https://arxiv.org/abs/2205.12740.

    [28]

    Wang A, Chen H, Liu L H, et al. YOLOv10: real-time end-to-end object detection[Z]. arXiv: 2405.14458, 2024. https://arxiv.org/abs/2405.14458.

  • 加载中

(11)

(7)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2024-11-20
修回日期:  2024-12-29
录用日期:  2024-12-30
刊出日期:  2025-02-28

目录

/

返回文章
返回