基于双路引导更新的光场图像超分网络

黄莉,吕天琪,武迎春,等. 基于双路引导更新的光场图像超分网络[J]. 光电工程,2024,51(12): 240222. doi: 10.12086/oee.2024.240222
引用本文: 黄莉,吕天琪,武迎春,等. 基于双路引导更新的光场图像超分网络[J]. 光电工程,2024,51(12): 240222. doi: 10.12086/oee.2024.240222
Huang L, Lv T Q, Wu Y C, et al. Two-way guided updating network for light field image super-resolution[J]. Opto-Electron Eng, 2024, 51(12): 240222. doi: 10.12086/oee.2024.240222
Citation: Huang L, Lv T Q, Wu Y C, et al. Two-way guided updating network for light field image super-resolution[J]. Opto-Electron Eng, 2024, 51(12): 240222. doi: 10.12086/oee.2024.240222

基于双路引导更新的光场图像超分网络

  • 基金项目:
    国家自然科学青年科学基金项目 (61601318);山西省专利转化计划项目 (202405009);山西省自然科学研究面上项目 (202103021224278,202103021224272)
详细信息

Two-way guided updating network for light field image super-resolution

  • Fund Project: Project supported by the National Natural Science Foundation of China (61601318), the Patent Conversion Program of Shanxi Province (202405009), and the Fundamental Research Program of Shanxi Province (202103021224278, 202103021224272)
More Information
  • 基于双平面模型的四维光场表示形式,光场相机以牺牲图像空间分辨率为代价,实现了三维场景空间信息和角度信息的同步记录。为了提高光场图像的空间分辨率,本文搭建了基于双路引导更新机制的光场图像超分辨率重建网络。网络前端以不同形式的图像阵列为输入,构建残差串并联卷积实现了空间、角度信息解耦合。针对解耦合后的空间、角度信息,设计了双路引导更新模块,采用逐级增强、融合、再增强的方式,完成空间信息与角度信息的交互引导迭代更新。最后将逐级更新后的角度信息送入简化后的残差特征蒸馏模块,实现数据重建。对比实验表明,所提网络在有效控制复杂度的基础上,获得了更好的超分性能。

  • Overview: Based on the two-plane representation model, the light field camera captures both spatial and angular information of a three-dimensional scene, which causes the spatial resolution decline of the light field image. To improve the spatial resolution, a two-way guided updating super-resolution network is constructed in this work. In the shallow layers of the network, a double-branch structure is adopted. A series-parallel convolution (RSPC) block based on the atrous spatial pyramid is designed in each branch to decouple the spatial and angular information from different forms of image arrays. Then, based on the ideas of enhancement, fusion, and re-enhancement, a two-way guide updating (TGU) module is designed to complete the iterative update of the decoupled spatial and angular information. Finally, the updated angular information at different layers is fed into the simplified residual feature distillation (SRFD) module to realize data reconstruction and upsampling. Based on effectively controlling complexity, this network adopts a two-way guided updating mechanism to collect light field features of different levels, achieving better super-resolution results. The design concepts for each part of the network are as follows:

    1) When decoupling spatial information and angular information, different forms of image arrays are used as inputs to extract the inherent features of each sub-aperture image and the overall parallax structure of the 4D light field through the RSPC block. The RSPC initially employs three atrous convolutions with varying atrous rates in parallel to achieve feature extraction at different levels. Subsequently, it cascades three convolutions of differing sizes to enhance feature extraction. Finally, a residual structure is introduced to mitigate network degradation.

    2) In the middle part of the network, TGU module is repeatedly used to iteratively update the decoupled spatial information and angular information. The angular features are first enhanced by TGU module, then fuse with the spatial features and feed into a multi-level perception residual module to obtain the updated angular features. The updated angular features are integrated with the original spatial features, then channel reduction is performed to obtain the updated spatial features.

    3) The SRFD module is presented to facilitate data reconstruction. In comparison to the residual feature distillation (RFD) network, SRFD uses channel attention to replace the CCA layer in the RFD, which results in fewer parameters and better performance.

    Numerous experimental results on public light field datasets have confirmed that our proposed method achieves state-of-the-art performance both in qualitative analysis and quantitative evaluation.

  • 加载中
  • 图 1  LF-TGUnet结构图。(a)整体网络结构图;(b) SE模块;(c) TGU模块; (d) SAF模块;(e) MLPR模块

    Figure 1.  An overview of our diagram. (a) Overall network architecture diagram; (b) SE module; (c) TGU module; (d) SAF module; (e) MLPR module

    图 2  SFRD与FRD对比。 (a) SRFD模块; (b) RFD模块

    Figure 2.  Comparison between SFRD and FRD. (a) SRFD module; (b) RFD module

    图 3  “Origima”与“Bicycle”场景的2倍超分的视觉效果对比

    Figure 3.  Visual results of the “Origima” and “Bicycle” scene with 2×SR

    图 4  “Bedroom”与“LEGO Knights”场景的4倍超分的视觉效果对比

    Figure 4.  Visual results of the “Bedroom” and “LEGO Knights” scene with 4×SR

    图 5  2倍超分任务下5×5子孔径图像PSNR值分布的可视化

    Figure 5.  A visualization of PSNR distribution among different perspectives on 5×5 LFs for 2×SR

    图 6  各个模块的变体。(a) RSPC无并联卷积;(b) RSPC无串联卷积;(c) RSPC无残差结构;(d) 单支路TGU

    Figure 6.  Variations of each module. (a) RSPC w/o parallel convolution; (b) RSPC w/o series convolution; (c) RSPC w/o residual; (d) Half TGU

    图 7  TGU个数的最优选择。(a) PSNR、网络参数量随TGU个数增长的曲线;(b) SSIM、FLOPs随TGU个数增长的曲线

    Figure 7.  Optimal selection of the number of TGUs. (a) PSNR and the number of parameters values increase with the number of TGUs; (b) SSIM and FLOPs values increase with the number of TGUs

    表 1  2倍超分和4倍超分任务下不同算法得到超分图像的PSNR/SSIM值

    Table 1.  PSNR/SSIM values by different methods for 2×SR and 4×SR

    Method Scale Dataset Average
    EPFL HCInew HCIold INRIA STFgantry
    bicubic29.74/0.937631.89/0.935637.69/0.978531.33/0.957731.06/0.949832.34/0.9518
    EDSR[32]33.09/0.963134.83/0.959441.01/0.987534.97/0.976536.29/0.981936.04/0.9728
    RCAN[33]33.16/0.963534.98/0.960241.05/0.987535.01/0.976936.33/0.982536.11/0.9741
    ResLF[15]32.75/0.967236.07/0.971542.61/0.992234.57/0.978436.89/0.987336.58/0.9793
    LFSSR[12]33.69/0.974836.86/0.975343.75/0.993935.27/0.983438.07/0.990237.53/0.9835
    LF-Internet[21]34.14/0.976137.28/0.976944.45/0.994535.80/0.984638.72/0.991638.08/0.9847
    LF-DFnet[20]34.44/0.976637.44/0.978644.23/0.994336.36/0.984139.61/0.993538.42/0.9854
    LF-IInet[22]34.68/0.977137.74/0.978944.84/0.994836.57/0.985339.86/0.993538.74/0.9859
    DPT[20]34.48/0.975937.35/0.977044.31/0.994336.40/0.984339.52/0.992838.41/0.9849
    LF-ADEnet[17]34.58/0.977237.92/0.979644.84/0.994836.59/0.985440.11/0.993938.81/0.9862
    LF-MDFnet[18]34.62/0.984437.37/0.977244.06/0.982336.23/0.979139.42/0.992338.34/0.9831
    LF-TGUnet34.67/0.977637.80/0.979144.78/0.994836.46/0.985739.95/0.993638.73/0.9862
    bicubic25.14/0.832427.61/0.851732.42/0.934426.82/0.886725.93/0.845227.58/0.8661
    EDSR[32]27.84/0.885829.60/0.887435.18/0.953829.66/0.925928.70/0.907530.20/0.9121
    RCAN[33]27.88/0.886329.63/0.888035.20/0.954029.76/0.927328.90/0.911030.27/0.9133
    ResLF[15]27.46/0.889929.92/0.901136.12/0.965129.64/0.933928.99/0.921430.43/0.9223
    LFSSR[12]28.27/0.908030.72/0.912436.70/0.969030.31/0.944630.15/0.938531.23/0.9345
    LF-Internet[21]28.67/0.914330.98/0.916537.11/0.971530.64/0.948630.53/0.942631.59/0.9387
    LF-DFnet[13]28.77/0.916531.23/0.919637.32/0.971830.83/0.950331.15/0.949431.86/0.9415
    LF-IInet[22]29.11/0.919431.36/0.921137.62/0.973731.08/0.951631.21/0.949532.08/0.9431
    DPT[20]28.93/0.916731.19/0.918637.39/0.972030.96/0.950231.14/0.948731.92/0.9412
    LF-ADEnet[17]28.81/0.919031.30/0.920637.39/0.972530.81/0.951331.15/0.949431.86/0.9429
    LF-MDFnet[18]28.70/0.904931.41/0.914637.42/0.985630.86/0.952130.86/0.936531.85/0.9387
    LF-TGUnet28.96/0.918931.42/0.921537.63/0.973431.28/0.952931.36/0.951132.13/0.9436
    下载: 导出CSV

    表 2  不同算法的参数量、每秒浮点运算次数与运行时间对比

    Table 2.  Comparisons of the number of parameters (#Params), FLOPs, and running time

    Method EDSR[32] RCAN[33] ResLF[15] LFSSR[12] LF-Internet[21] LF-DFnet[13] LF-IInet[22] DPT[20] LF-ADEnet[17] LF-MDFnet[18] LF-TGUnet
    #Params/M 38.62 15.31 6.35 0.81 4.80 3.94 4.84 3.73 12.74 5.37 4.37
    38.89 15.36 6.79 1.61 5.23 3.99 4.89 3.78 12.80 5.42 4.42
    FLOPs/G 39.56×25 15.59×25 37.06 25.70 47.46 57.22 56.16 57.44 238.92 135.65 78.84
    40.66×25 15.65×25 39.70 128.44 50.10 57.31 57.42 58.64 240.51 136.91 80.11
    Running time
    /s
    0.44
    13.10
    2.95
    0.21 1.45
    1.73
    0.55
    7.56
    4.85 3.53 3.02
    0.29
    3.54
    0.95
    0.16 0.47
    0.55
    0.21
    2.06
    1.75 1.77 0.81
    下载: 导出CSV

    表 3  各模块的有效性验证

    Table 3.  Validity verification of each module

    Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
    (LF-TGUnet)
    Spatial and
    angular information
    decoupling
    RPSC w/o parallel
    convolution
    RPSC w/o series
    convolution
    RPSC w/o residual
    RSPC
    Spatial and
    angular features
    guided updating
    half TGU
    TGU
    TGU w/o MLPR
    MLPR
    Data reconstruction RFD
    SRFD
    #Params/M 4.30 4.34 4.42 4.46 4.41 5.70 4.42
    Dataset EPFL 28.83/0.9184 29.01/0.9196 25.26/0.8324 27.82/0.8856 28.87/0.9195 29.18/0.9175 28.96/0.9189
    HCInew 31.40/0.9214 31.40/0.9216 27.71/0.8517 29.64/0.8869 31.37/0.9212 31.23/0.9193 31.42/0.9215
    HCIold 37.55/0.9730 37.57/0.9731 32.58/0.9344 35.12/0.9536 37.51/0.9732 37.30/0.9720 37.63/0.9734
    INRIA 30.89/0.9512 30.97/0.9516 26.95/0.8867 29.79/0.9264 31.02/0.9520 31.08/0.9505 31.28/0.9529
    STFgantry 31.35/0.9510 31.35/0.9511 26.09/0.8452 28.78/0.9091 31.29/0.9512 31.07/0.9486 31.36/0.9511
    Average (PSNR/SSIM) 32.00/0.9430 32.06/0.9434 27.72/0.8701 30.23/0.9123 32.01/0.9434 31.97/0.9416 32.13/0.9436
    Deviation −0.13/−0.0006 −0.07/−0.0002 −4.41/−0.0735 −1.90/−0.0313 −0.12/−0.0002 −0.16/−0.0020 0/0
    下载: 导出CSV
  • [1]

    Van Duong V, Huu T N, Yim J, et al. Light field image super-resolution network via joint spatial-angular and epipolar information[J]. IEEE Trans Comput Imaging, 2023, 9: 350−366. doi: 10.1109/TCI.2023.3261501

    [2]

    Wang C C, Zang Y S, Zhou D M, et al. Robust multi-focus image fusion using focus property detection and deep image matting[J]. Expert Syst Appl, 2024, 237: 121389. doi: 10.1016/j.eswa.2023.121389

    [3]

    Sakem A, Ibrahem H, Kang H S. Learning epipolar-spatial relationship for light field image super-resolution[C]// Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Vancouver, 2023: 1336–1345. https://doi.org/10.1109/CVPRW59228.2023.00140.

    [4]

    Cui Z L, Sheng H, Yang D, et al. Light field depth estimation for non-Lambertian objects via adaptive cross operator[J]. IEEE Trans Circuits Syst Video Technol, 2024, 34 (2): 1199−1211. doi: 10.1109/TCSVT.2023.3292884

    [5]

    Chao W T, Wang X C, Wang Y Q, et al. Learning sub-pixel disparity distribution for light field depth estimation[J]. IEEE Trans Comput Imaging, 2023, 9: 1126−1138. doi: 10.1109/TCI.2023.3336184

    [6]

    Wang Y Q, Wang L G, Wu G C, et al. Disentangling light fields for super-resolution and disparity estimation[J]. IEEE Trans Pattern Anal Mach Intell, 2023, 45 (1): 425−443. doi: 10.1109/TPAMI.2022.3152488

    [7]

    Ding Y Q, Chen Z, Ji Y, et al. Light field-based underwater 3D reconstruction via angular re-sampling[J]. IEEE Trans Comput Imaging, 2023, 9: 881−893. doi: 10.1109/TCI.2023.3319983

    [8]

    张志俊, 吴庆阳, 邓亦锋, 等. 基于霍夫变换的结构光场3维成像方法[J]. 激光技术, 2023, 47 (4): 492−499. doi: 10.7510/jgjs.issn.1001-3806.2023.04.008

    Zhang Z J, Wu Q Y, Deng Y F, et al. Structured light field 3-D imaging method based on Hough transform[J]. Laser Technol, 2023, 47 (4): 492−499. doi: 10.7510/jgjs.issn.1001-3806.2023.04.008

    [9]

    Gao W, Fan S L, Li G, et al. A thorough benchmark and a new model for light field saliency detection[J]. IEEE Trans Pattern Anal Mach Intell, 2023, 45 (7): 8003−8019. doi: 10.1109/TPAMI.2023.3235415

    [10]

    Chen G, Fu H Z, Zhou T, et al. Fusion-embedding Siamese network for light field salient object detection[J]. IEEE Trans Multimedia, 2024, 26: 984−994. doi: 10.1109/TMM.2023.3274933

    [11]

    Chen Y L, Li G Y, An P, et al. Light field salient object detection with sparse views via complementary and discriminative interaction network[J]. IEEE Trans Circuits Syst Video Technol, 2024, 34 (2): 1070−1085. doi: 10.1109/TCSVT.2023.3290600

    [12]

    Yeung H W F, Hou J H, Chen X M, et al. Light field spatial super-resolution using deep efficient spatial-angular separable convolution[J]. IEEE Trans Image Process, 2019, 28 (5): 2319−2330. doi: 10.1109/TIP.2018.2885236

    [13]

    Wang Y Q, Yang J G, Wang L G, et al. Light field image super-resolution using deformable convolution[J]. IEEE Trans Image Process, 2021, 30: 1057−1071. doi: 10.1109/TIP.2020.3042059

    [14]

    Yoon Y, Jeon H G, Yoo D, et al. Learning a deep convolutional network for light-field image super-resolution[C]//Proceedings of 2015 IEEE International Conference on Computer Vision Workshop, Santiago, 2015: 24–32. https://doi.org/10.1109/ICCVW.2015.17.

    [15]

    Zhang S, Lin Y F, Sheng H. Residual networks for light field image super-resolution[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, 2019: 11046–11055. https://doi.org/10.1109/CVPR.2019.01130.

    [16]

    Jin J, Hou J H, Chen J, et al. Light field spatial super-resolution via deep combinatorial geometry embedding and structural consistency regularization[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 2020: 2260–2269. https://doi.org/10.1109/CVPR42600.2020.00233.

    [17]

    吕天琪, 武迎春, 赵贤凌. 角度差异强化的光场图像超分网络[J]. 光电工程, 2023, 50 (2): 220185. doi: 10.12086/oee.2023.220185

    Lv T Q, Wu Y C, Zhao X L. Light field image super-resolution network based on angular difference enhancement[J]. Opto-Electron Eng, 2023, 50 (2): 220185. doi: 10.12086/oee.2023.220185

    [18]

    Chan K H, Im S K. Light-field image super-resolution with depth feature by multiple-decouple and fusion module[J]. Electron Lett, 2024, 60 (1): e13019. doi: 10.1049/ell2.13019

    [19]

    Liang Z Y, Wang Y Q, Wang L G, et al. Angular‐flexible network for light field image super‐resolution[J]. Electron Lett, 2021, 57 (24): 921−924. doi: 10.1049/ell2.12312

    [20]

    Wang S Z, Zhou T F, Lu Y, et al. Detail-preserving transformer for light field image super-resolution[C]//Proceedings of the 36th AAAI Conference on Artificial Intelligence, Vancouver, 2022: 2522–2530. https://doi.org/10.1609/aaai.v36i3.20153.

    [21]

    Wang Y Q, Wang L G, Yang J G, et al. Spatial-angular interaction for light field image super-resolution[C]// Proceedings of the 16th European Conference on Computer Vision, Glasgow, 2020: 290–308. https://doi.org/10.1007/978-3-030-58592-1_18.

    [22]

    Liu G S, Yue H J, Wu J M, et al. Intra-inter view interaction network for light field image super-resolution[J]. IEEE Trans Multimedia, 2023, 25: 256−266. doi: 10.1109/TMM.2021.3124385

    [23]

    李玉龙, 陈晔曜, 崔跃利, 等. LF-UMTI: 基于多尺度空角交互的无监督多曝光光场图像融合[J]. 光电工程, 2024, 51 (6): 240093. doi: 10.12086/oee.2024.240093

    Li Y L, Chen Y Y, Cui Y L, et al. LF-UMTI: unsupervised multi-exposure light field image fusion based on multi-scale spatial-angular interaction[J]. Opto-Electron Eng, 2024, 51 (6): 240093. doi: 10.12086/oee.2024.240093

    [24]

    武迎春, 王玉梅, 王安红, 等. 基于边缘增强引导滤波的光场全聚焦图像融合[J]. 电子与信息学报, 2020, 42 (9): 2293−2301. doi: 10.11999/JEIT190723

    Wu Y C, Wang Y M, Wang A H, et al. Light field all-in-focus image fusion based on edge enhanced guided filtering[J]. J Electron Inf Technol, 2020, 42 (9): 2293−2301. doi: 10.11999/JEIT190723

    [25]

    Wu Y C, Wang Y M, Liang J, et al. Light field all-in-focus image fusion based on spatially-guided angular information[J]. J Vis Commun Image Represent, 2020, 72: 102878. doi: 10.1016/j.jvcir.2020.102878

    [26]

    Liu J, Tang J, Wu G S. Residual feature distillation network for lightweight image super-resolution[C]//Proceedings of 2020 European Conference on Computer Vision Workshops, Glasgow, 2020: 41–55. https://doi.org/10.1007/978-3-030-67070-2_2.

    [27]

    Rerabek M, Ebrahimi T. New light field image dataset[C]//Proceedings of the 8th International Conference on Quality of Multimedia Experience, Lisbon, 2016.

    [28]

    Honauer K, Johannsen O, Kondermann D, et al. A dataset and evaluation methodology for depth estimation on 4D light fields[C]//Proceedings of the 13th Asian Conference on Computer Vision, Taipei, China, 2017, 10113 : 19–34. https://doi.org/10.1007/978-3-319-54187-7_2.

    [29]

    Wanner S, Meister S, Goldluecke B. Datasets and benchmarks for densely sampled 4D light fields[C]// Proceedings of the 18th International Workshop on Vision, Lugano, 2013: 225–226.

    [30]

    Le Pendu M, Jiang X R, Guillemot C. Light field inpainting propagation via low rank matrix completion[J]. IEEE Trans Image Process, 2018, 27 (4): 1981−1993. doi: 10.1109/TIP.2018.2791864

    [31]

    Vaish V, Adams A. The (new) Stanford light field archive[EB/OL]. [2024-3-15]. http://lightfield.stanford.edu/.

    [32]

    Lim B, Son S, Kim H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, 2017: 136–144. https://doi.org/10.1109/CVPRW.2017.151.

    [33]

    Zhang Y L, Li K P, Li K, et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, 2018: 286–301. https://doi.org/10.1007/978-3-030-01234-2_18.

  • 加载中

(8)

(3)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2024-09-18
修回日期:  2024-11-23
录用日期:  2024-12-03
刊出日期:  2024-12-25

目录

/

返回文章
返回