调频连续波激光多路并行相干精密长度测量方法

胡申博,刘俊辰,余苏,等. 调频连续波激光多路并行相干精密长度测量方法[J]. 光电工程,2024,51(3): 230285. doi: 10.12086/oee.2024.230285
引用本文: 胡申博,刘俊辰,余苏,等. 调频连续波激光多路并行相干精密长度测量方法[J]. 光电工程,2024,51(3): 230285. doi: 10.12086/oee.2024.230285
Hu S B, Liu J C, Yu S, et al. Multiline parallel precision coherent length measurement of frequency modulation continuous wave LiDAR[J]. Opto-Electron Eng, 2024, 51(3): 230285. doi: 10.12086/oee.2024.230285
Citation: Hu S B, Liu J C, Yu S, et al. Multiline parallel precision coherent length measurement of frequency modulation continuous wave LiDAR[J]. Opto-Electron Eng, 2024, 51(3): 230285. doi: 10.12086/oee.2024.230285

调频连续波激光多路并行相干精密长度测量方法

  • 基金项目:
    国家自然科学基金资助项目(52035013)
详细信息
    作者简介:
    *通讯作者: 张福民,zhangfumin@tju.edu.cn
  • 中图分类号: TN958.98

Multiline parallel precision coherent length measurement of frequency modulation continuous wave LiDAR

  • Fund Project: Project supported by National Natural Science Fundation of China (52035013)
More Information
  • 面向航空航天等大型复杂机电系统,长度测量的需求从单独的一维位移测量发展到多目标、灵活便于拓展的多路并行测量。调频连续波激光雷达长度测量技术具备抗干扰、精度高、无合作等优势。本文基于调频连续波激光雷达技术开展多路并行相干精密长度测量方法研究,针对传统长度测量系统存在光纤色散、辅助路光纤漂移导致长度测量精度降低问题,提出一种含有氰化氢气体吸收池的三光路马赫-曾德尔干涉测量系统,在此基础上,基于光开关结构实现精密长度多路并行测量。通过精密导轨长度测量实验结果表明,提出的方法在3.6 m长度范围内标准差不超过25 μm,实现了四路并行长度测量。与商用激光干涉仪测量结果比较,多路测量结果的绝对误差不超过30 μm。

  • Overview: For large complex electromechanical systems such as aeronautics and astronautics, the demand for length measurement has also evolved from one-dimensional displacement measurement to multi-objective, flexible and extensible multiline parallel measurement. The demand for large-size measurements in various industries, especially the manufacturing industry, is increasing day by day and tends to be diversified.

    Frequency-modulated continuous-wave lidar measurement is an absolute ranging method that modulates the frequency of the laser, generates a beat frequency through the local oscillator signal of the frequency-modulated laser and the echo signal reflected from the target being measured, and extracts the interference beat frequency signal to obtain the measured distance. Frequency-modulated continuous-wave lidar combines the advantages of traditional radar and laser interferometry, with its non-contact, large measurement range, high resolution and strong anti-interference ability. It plays a vital role in the fields of large-scale space precision measurement, micro-measurement, and biometrics. Compared with the pulse ranging method, it has higher ranging accuracy; compared with the interferometric laser ranging, it can achieve absolute distance measurement, and the system measurement structure is simple. As a high-precision spatial large-scale absolute distance measurement method, frequency-modulated continuous-wave laser length measurement technology can meet the needs of a new generation of measurement scenarios and has many advantages such as anti-interference, high accuracy, and no cooperation. This paper researches multiline parallel coherent precision length measurement methods based on frequency-modulated continuous-wave lasers. Because of the problems of fiber dispersion and auxiliary fiber drift in the traditional length measurement system, which lead to reduced length measurement accuracy, a three-optical path containing a hydrogen cyanide gas absorption cell is proposed. The Mach-Zehnder interferometry system, on this basis, realizes precision length multiline parallel measurement based on the optical switch structure. The experimental results of precision guide rail length measurement show that the proposed method is less than 25 μm in the length range of 3.6 m. The four-way parallel length measurement is realized. The absolute error of the multi-channel measurement results is not more than 30 μm compared with the measurement results of a commercial laser interferometer.

  • 加载中
  • 图 1  FMCW激光测距基本光路图

    Figure 1.  The basic optical diagram of FMCW laser ranging

    图 2  HCN气体吸收池信号图

    Figure 2.  HCN gas cell signal diagram

    图 3  基于HCN吸收池的FMCW测距系统示意图

    Figure 3.  Schematic diagram of FMCW ranging system based on HCN gas cell

    图 4  HCN吸收峰值相位拟合示意图

    Figure 4.  Schematic diagram of HCN absorption peak phase fitting

    图 5  HCN结合重采样的多路测距系统

    Figure 5.  HCN combined with resampling multiline ranging system

    图 6  三种测量方法的误差对比

    Figure 6.  Error comparison of three measurement methods

    图 7  步进10 mm的差值误差棒

    Figure 7.  Differential error bar with a step of 10 mm

    图 8  信号对比图。(a) 重采样和滤波前;(b) 重采样和滤波后

    Figure 8.  Signal comparison diagram. (a) Before resampling and filtering;(b) After Resampling and filtering

    图 9  三种测量方法结果对比图

    Figure 9.  Comparison chart of the results of three measurement methods

    图 10  不同位置处四路测量标准差

    Figure 10.  The standard deviation of four-way measurement at different positions

    图 11  四通道测量差值误差棒

    Figure 11.  Four-channel measurement differential error bar

  • [1]

    叶声华, 王仲, 曲兴华. 精密测试技术展望[J]. 中国机械工程, 2000, 11(3): 262−263. doi: 10.3321/j.issn:1004-132X.2000.03.007

    Ye S H, Wang Z, Qu X H. Review and prospect of precision inspection[J]. China Mech Eng, 2000, 11(3): 262−263. doi: 10.3321/j.issn:1004-132X.2000.03.007

    [2]

    周济. 智能制造−"中国制造2025"的主攻方向[J]. 中国机械工程, 2015, 26(17): 2273−2284. doi: 10.3969/j.issn.1004-132X.2015.17.001

    Zhou J. Intelligent manufacturing - main direction of "Made in China 2025"[J]. China Mech Eng, 2015, 26(17): 2273−2284. doi: 10.3969/j.issn.1004-132X.2015.17.001

    [3]

    叶声华, 邾继贵, 张滋黎, 等. 大空间坐标尺寸测量研究的现状与发展[J]. 计量学报, 2008, 29(4A): 1−6.

    Ye S H, Zhu J G, Zhang Z L, et al. Status and development of large-scale coordinate measurement research[J]. Acta Metrol Sin, 2008, 29(4A): 1−6.

    [4]

    李超林, 刘俊辰, 张福民, 等. 频率调制连续波激光雷达测量技术的非线性校正综述[J]. 光电工程, 2022, 49(7): 210438. doi: 10.12086/oee.2022.210438

    Li C L, Liu J C, Zhang F M, et al. Review of nonlinearity correction of frequency modulated continuous wave LiDAR measurement technology[J]. Opto-Electron Eng, 2022, 49(7): 210438. doi: 10.12086/oee.2022.210438

    [5]

    阳琴, 陈孝林, 曾诚, 等. 基于DPMZM的微波光子倍频激光雷达仿真分析[J]. 激光技术, 2023, 47(6): 729−735. doi: 10.7510/jgjs.issn.1001-3806.2023.06.001

    Yang Q, Chen X L, Zeng C, et al. Simulation and analysis of LiDAR based on DPMZM and microwave photonic frequency multiplication[J]. Laser Technol, 2023, 47(6): 729−735. doi: 10.7510/jgjs.issn.1001-3806.2023.06.001

    [6]

    Yüksel K, Wuilpart M, Mégret P. Analysis and suppression of nonlinear frequency modulation in an optical frequency-domain reflectometer[J]. Opt Express, 2009, 17(7): 5845−5851. doi: 10.1364/OE.17.005845

    [7]

    Moore E D, McLeod R R. Correction of sampling errors due to laser tuning rate fluctuations in swept-wavelength interferometry[J]. Opt Express, 2008, 16(17): 13139−13149. doi: 10.1364/OE.16.013139

    [8]

    Mateo A B, Barber Z W. Precision and accuracy testing of FMCW ladar-based length metrology[J]. Appl Opt, 2015, 54(19): 6019−6024. doi: 10.1364/AO.54.006019

    [9]

    Yu Z H, Lu C, Liu G D. FMCW LiDAR with an FM nonlinear kernel function for dynamic-distance measurement[J]. Opt Express, 2022, 30(11): 19582−19596. doi: 10.1364/OE.458235

    [10]

    Schmalzried S, Schmitz H, Zimmermann M. A flexible and, robust 3D coordinate measurement system based on white light interferometry for calibration of industrial systems[C]//Proceedings of the 11th International Symposium on Measurement and Quality Control, 2013.

    [11]

    Hughes B, Campbell M A, Lewis A J, et al. Development of a high-accuracy multi-sensor, multi-target coordinate metrology system using frequency scanning interferometry and multilateration[J]. Proc SPIE, 2017, 10332: 1033202. doi: 10.1117/12.2273644

  • 加载中

(12)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2023-11-22
修回日期:  2024-01-10
录用日期:  2024-01-10
刊出日期:  2024-04-05

目录

/

返回文章
返回