纤维状有机光电探测器制备与特性研究

武雪源,杜晓松,刘青霞,等. 纤维状有机光电探测器制备与特性研究[J]. 光电工程,2023,50(1): 220151. doi: 10.12086/oee.2023.220151
引用本文: 武雪源,杜晓松,刘青霞,等. 纤维状有机光电探测器制备与特性研究[J]. 光电工程,2023,50(1): 220151. doi: 10.12086/oee.2023.220151
Wu X Y, Du X S, Liu Q X, et al. Fabrication and properties of fiber-based organic photodetectors[J]. Opto-Electron Eng, 2023, 50(1): 220151. doi: 10.12086/oee.2023.220151
Citation: Wu X Y, Du X S, Liu Q X, et al. Fabrication and properties of fiber-based organic photodetectors[J]. Opto-Electron Eng, 2023, 50(1): 220151. doi: 10.12086/oee.2023.220151

纤维状有机光电探测器制备与特性研究

  • 基金项目:
    国家自然科学基金资助项目 (U19A2070、2210050869);国家杰出青年科学基金项目 (62225106);四川省科技计划项目 (2021YFH0186);四川省科技创新苗子工程 (2021062)
详细信息

Fabrication and properties of fiber-based organic photodetectors

  • Fund Project: Natural Science Foundation of China (U19A2070, 2210050869), National Science Funds for Excellent Young Scholars of China (61822106), Sichuan Science and Technology Program (2021YFH0186), and the Science and Technology Innovation Seedling Project of Sichuan Province (2021062).
More Information
  • 纤维状光电探测器因具有柔性可编织、全角度光探测等特性,有望在可穿戴电子领域取得广泛应用。现已报道的纤维状光电探测器多采用无机光敏材料,器件存在机械柔性受限、制备工艺复杂等问题。本文提出制备纤维状有机光电探测器(FOPD),采用浸渍提拉法依次在锌丝表面制备电子传输层(ZnO)、有机体异质结光敏层(PBDB-T:ITIC-Th)和空穴传输层(PEDOT:PSS)等功能层,最后缠绕银丝或碳纳米管纤维(CNT)作为外电极,制备了两种柔性FOPD。结果表明,两种器件在可见光波段均具有优良的响应,整流特性明显,在−0.5 V偏压下比探测率均可达1011 Jones (300 nm~760 nm)。其中,CNT外电极与光敏层的界面接触更佳,器件具有更低的暗电流密度(9.5×10−8 A cm−2,−0.5 V)和更快的响应速度(上升、下降时间:0.88 ms、6.00 ms)。本文的研究有望为柔性纤维器件和可穿戴电子领域的发展提供新思路。

  • 加载中
  • 图 1  器件制备流程示意图。(a) 预处理后的锌丝;(b) 浸涂并退火制备ZnO电子传输层;(c) 浸涂光敏层并退火;(d) 浸涂空穴传输层并退火;(e) 缠绕外电极;(f) 缠绕电极装置示意图

    Figure 1.  Schematic diagram of the device preparation process. (a) Pretreated zinc wire; (b) Preparation of the ZnO electron transport layer by dip coating and annealing; (c) Dip-coating the photosensitive layer and annealing; (d) Dip-coating the hole transport layer and annealing; (e) Winding the external electrode; (f) Schematic diagram of the twist equipment

    图 2  (a) PBDB-T和(b) ITIC-Th的分子式;(c) PBDB-T与ITIC-Th的吸收光谱;(d) 器件各功能层材料能级排列示意图;(e) 器件截面SEM图

    Figure 2.  Molecular structures of (a) PBDB-T and (b) ITIC-Th; (c) Normalized absorption spectra of PBDB-T and ITIC-Th; (d) Energy level alignment of the device materials; (e) Cross-sectional SEM image of the device

    图 3  (a) Ag-FOPD器件实物图和(b、c) SEM图;(d) CNT-FOPD器件的实物图和(e、f) SEM图

    Figure 3.  (a) Optical photos and (b, c) SEM images of the Ag-FOPD; (d) Optical photos and (e, f) SEM images of the CNT-FOPD

    图 4  器件光谱响应特性。(a) J-V特性对比;(b) 响应度对比;(c) 外量子效率对比;(d) 比探测率对比

    Figure 4.  Spectral response characteristics of FOPDs. (a) J-V characteristics; (b) R; (c) EQE; (d) D*

    图 5  器件响应特性。(a) Ag-FOPD和(d)CNT-FOPD器件响应时间;(b, e) Ag-FOPD与CNT-FOPD全角度光响应特性;(c, f) Ag-FOPD和CNT-FOPD器件在不同光功率下的响应度

    Figure 5.  Response time of (a) Ag-FOPD and (d) CNT-FOPD; Omnidirectional performance of (b) Ag-FOPD and (e) CNT-FOPD; (c, f) Response of Ag-FOPD and CNT-FOPD under different light intensity

  • [1]

    Koo J H, Yun H, Lee W, et al. Recent advances in soft electronic materials for intrinsically stretchable optoelectronic systems[J]. Opto-Electron Adv, 2022, 5(8): 210131. doi: 10.29026/oea.2022.210131

    [2]

    Cai S, Xu X J, Yang W, et al. Materials and designs for wearable photodetectors[J]. Adv Mater, 2019, 31(18): 1808138. doi: 10.1002/adma.201808138

    [3]

    Chow P C Y, Someya T. Organic photodetectors for next-generation wearable electronics[J]. Adv Mater, 2020, 32(15): 1902045. doi: 10.1002/adma.201902045

    [4]

    Hatamvand M, Kamrani E, Lira-Cantú M, et al. Recent advances in fiber-shaped and planar-shaped textile solar cells[J]. Nano Energy, 2020, 71: 104609. doi: 10.1016/j.nanoen.2020.104609

    [5]

    Chen D, Jiang K, Huang T T, et al. Recent advances in fiber supercapacitors: materials, device configurations, and applications[J]. Adv Mater, 2020, 32(5): 1901806. doi: 10.1002/adma.201901806

    [6]

    Zhang Z T, Guo K P, Li Y M, et al. A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell[J]. Nat Photonics, 2015, 9(4): 233−238. doi: 10.1038/nphoton.2015.37

    [7]

    Lu L J, Zhou Y J, Pan J, et al. Design of helically double-leveled gaps for stretchable fiber strain sensor with ultralow detection limit, broad sensing range, and high repeatability[J]. ACS Appl Mater Interfaces, 2019, 11(4): 4345−4352. doi: 10.1021/acsami.8b17666

    [8]

    Wang L, Wang L Y, Zhang Y, et al. Weaving sensing fibers into electrochemical fabric for real-time health monitoring[J]. Adv Funct Mater, 2018, 28(42): 1804456. doi: 10.1002/adfm.201804456

    [9]

    Wang L, Fu X M, He J Q, et al. Application challenges in fiber and textile electronics[J]. Adv Mater, 2020, 32(5): 1901971. doi: 10.1002/adma.201901971

    [10]

    Chen J X, Ding L W, Zhang X H, et al. Strain-enhanced cable-type 3D UV photodetecting of ZnO nanowires on a Ni wire by coupling of piezotronics effect and pn junction[J]. Opt Express, 2014, 22(3): 3661−3668. doi: 10.1364/OE.22.003661

    [11]

    Xu X J, Chen J X, Cai S, et al. A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector[J]. Adv Mater, 2018, 30(43): 1803165. doi: 10.1002/adma.201803165

    [12]

    Wang Z N, Yu R M, Pan C F, et al. Piezo-phototronic UV/visible photosensing with optical-fiber-nanowire hybridized structures[J]. Adv Mater, 2015, 27(9): 1553−1560. doi: 10.1002/adma.201405274

    [13]

    Zhu Z F, Ju D, Zou Y S, et al. Boosting fiber-shaped photodetectors via "soft" interfaces[J]. ACS Appl Mater Interfaces, 2017, 9(13): 12092−12099. doi: 10.1021/acsami.7b00811

    [14]

    Lan Z J, Lee M H, Zhu F R. Recent advances in solution-processable organic photodetectors and applications in flexible electronics[J]. Adv Intell Syst, 2022, 4(3): 2100167. doi: 10.1002/aisy.202100167

    [15]

    Li T H, Chen Z X, Wang Y Y, et al. Materials for interfaces in organic solar cells and photodetectors[J]. ACS Appl Mater Interfaces, 2020, 12(3): 3301−3326. doi: 10.1021/acsami.9b19830

    [16]

    Li X R, Du X Y, Zhao J W, et al. Layer-by-layer solution processing method for organic solar cells[J]. Solar RRL, 2021, 5(1): 2000592. doi: 10.1002/solr.202000592

    [17]

    Rio E, Boulogne F. Withdrawing a solid from a bath: how much liquid is coated?[J]. Adv Colloid Interface Sci, 2017, 247: 100−114. doi: 10.1016/j.cis.2017.01.006

    [18]

    Zhou X K, Yang D Z, Ma D G, et al. Ultrahigh gain polymer photodetectors with spectral response from UV to near-infrared using ZnO nanoparticles as anode interfacial layer[J]. Adv Funct Mater, 2016, 26(36): 6619−6626. doi: 10.1002/adfm.201601980

    [19]

    Kolodziejczak-Radzimska A, Jesionowski T. Zinc oxide-from synthesis to application: a review[J]. Materials, 2014, 7(4): 2833−2881. doi: 10.3390/ma7042833

    [20]

    Ren H, Chen J D, Li Y Q, et al. Recent progress in organic photodetectors and their applications[J]. Adv Sci, 2021, 8(1): 2002418. doi: 10.1002/advs.202002418

    [21]

    Zhao W C, Qian D P, Zhang S Q, et al. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability[J]. Adv Mater, 2016, 28(23): 4734−4739. doi: 10.1002/adma.201600281

    [22]

    Lin Y Z, Zhao F W, He Q, et al. High-performance electron acceptor with thienyl side chains for organic photovoltaics[J]. J Am Chem Soc, 2016, 138(14): 4955−4961. doi: 10.1021/jacs.6b02004

    [23]

    Lim F J, Ananthanarayanan K, Luther J, et al. Influence of a novel fluorosurfactant modified PEDOT: PSS hole transport layer on the performance of inverted organic solar cells[J]. J Mater Chem, 2012, 22(48): 25057−25064. doi: 10.1039/C2JM35646E

    [24]

    Wang C Y, Xia K L, Wang H M, et al. Advanced carbon for flexible and wearable electronics[J]. Adv Mater, 2019, 31(9): 1801072. doi: 10.1002/adma.201801072

    [25]

    Jang Y, Kim S M, Spinks G M, et al. Carbon nanotube yarn for fiber-shaped electrical sensors, actuators, and energy storage for smart systems[J]. Adv Mater, 2020, 32(5): 1902670. doi: 10.1002/adma.201902670

    [26]

    Wang C, Zhang X T, Hu W P. Organic photodiodes and phototransistors toward infrared detection: materials, devices, and applications[J]. Chem Soc Rev, 2020, 49(3): 653−670. doi: 10.1039/C9CS00431A

  • 加载中

(5)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2022-07-01
修回日期:  2022-09-28
录用日期:  2022-10-21
网络出版日期:  2022-12-27
刊出日期:  2023-01-19

目录

/

返回文章
返回