基于图像信息约束的三维激光点云聚类方法

夏金泽,孙浩铭,胡盛辉,等. 基于图像信息约束的三维激光点云聚类方法[J]. 光电工程,2023,50(2): 220148. doi: 10.12086/oee.2023.220148
引用本文: 夏金泽,孙浩铭,胡盛辉,等. 基于图像信息约束的三维激光点云聚类方法[J]. 光电工程,2023,50(2): 220148. doi: 10.12086/oee.2023.220148
Xia J Z, Sun H M, Hu S H, et al. 3D laser point cloud clustering method based on image information constraints[J]. Opto-Electron Eng, 2023, 50(2): 220148. doi: 10.12086/oee.2023.220148
Citation: Xia J Z, Sun H M, Hu S H, et al. 3D laser point cloud clustering method based on image information constraints[J]. Opto-Electron Eng, 2023, 50(2): 220148. doi: 10.12086/oee.2023.220148

基于图像信息约束的三维激光点云聚类方法

  • 基金项目:
    浙江省公益技术应用研究计划项目(LGG21E050008);宁波市科技创新2025重大专项(2019B10100);宁波市公益性科技计划项目(2022S004)
详细信息
    作者简介:
    *通讯作者: 梁冬泰,liangdongtai@nbu.edu.cn
  • 中图分类号: TP249

3D laser point cloud clustering method based on image information constraints

  • Fund Project: Public Welfare Project of Zhejiang Natural Science Foundation (LGG21E050008), the Ningbo 2025 Science and Technology Innovation Major Project (2019B10100), and Public Welfare Project of Ningbo Science and Technology Foundation (2022S004)
More Information
  • 针对移动机器人在未知环境感知过程中对三维点云快速聚类分割的需求,提出一种基于图像信息约束的三维激光点云聚类方法。首先通过点云预处理获取有效的三维环境信息,采用RANSAC方法进行地面点云的分割剔除。其次传感器数据在完成时空配准后引入YOLOv5目标检测算法,对三维点云K-means聚类算法进行改进,利用二维图像目标物的检测框范围约束三维点云,减少非目标物的干扰;基于图像检测信息实现点云聚类算法的参数初始化;采用类内异点剔除法优化聚类结果。最后搭建移动机器人硬件平台,对箱体进行测试,实验结果表明,本文方法的聚类准确率和聚类时间分别为86.96%和23 ms,可用于移动机器人导航避障、自主搬运等领域。

  • 加载中
  • 图 1  基于图像信息约束的三维激光点云聚类算法流程图

    Figure 1.  Flow chart of 3D laser point cloud clustering algorithm constrained by image information

    图 2  点云数据预处理。 (a) 处理前; (b) 处理后

    Figure 2.  Preprocessing of point cloud data. (a) Before processing; (b) After processing

    图 3  地面分割。(a) 地面点; (b) 非地面点

    Figure 3.  Ground segmentation. (a) Groud points; (b) Non-groud points

    图 4  传感器坐标系

    Figure 4.  Sensor coordinate system

    图 5  YOLOv5网络结构图

    Figure 5.  YOLOv5 network structure diagram

    图 6  检测框约束点云示意图

    Figure 6.  Schematic diagram of detection frame constraint point cloud

    图 7  聚类质心选取图

    Figure 7.  Cluster centroid selection graph

    图 8  实验硬件平台及实验场景

    Figure 8.  Experimental hardware platform and experimental scene

    图 9  时间戳对齐

    Figure 9.  Align timestamp

    图 10  激光雷达与相机标定。(a) 标定前; (b) 标定后

    Figure 10.  LiDAR and camera calibration. (a) Before calibration; (b) After calibration

    图 11  多种算法聚类结果。 (a) DBSCAN; (b) Euclidean Clustering; (c) K-means++; (d) My-method

    Figure 11.  Clustering results of multiple algorithms. (a) DBSCAN; (b) Euclidean Clustering; (c) K-means++; (d) My-method

    图 12  本文方法各模块运行时间

    Figure 12.  Running time of each module of this method

    表 1  内参标定结果

    Table 1.  Calibration results of internal parameters

    fxfycxcyk1k2p1p2
    K657.58660.12296.12246.35
    D0.238809−0.6438020.001786−0.024125
    下载: 导出CSV

    表 2  外参标定结果

    Table 2.  Calibration results of external parameters

    x/mmy/mmz/mmRoll/radPitch/radYaw/rad
    T59.9452.76−14.46−1.5400.031−1.581
    下载: 导出CSV

    表 3  分布间距对算法影响

    Table 3.  Affects of distribution spacing on the algorithm

    Distribution spacing/cmMy-methodK-meansK-means++Euclidean ClusteringDBSCAN
    $ \omega $$ \eta $$ \omega $$ \eta $$ \omega $$ \eta $$ \omega $$ \eta $$ \omega $$ \eta $
    20.440.72
    50.460.70
    100.720.88
    150.620.74
    200.540.70
    下载: 导出CSV

    表 4  多种算法性能对比

    Table 4.  Performance comparison of multiple algorithms

    AlgorithmNumber of correct
    divisions/number
    Clustering
    accuracy/%
    Average time
    spent/ms
    Average number of
    iterations/number
    DBSCAN25870.113.625
    Euclidean Clustering26271.202.517
    K-means21057.071.95112
    K-means++22260.333.37310
    My-method32086.961.1066
    下载: 导出CSV
  • [1]

    姬长英, 周俊. 农业机械导航技术发展分析[J]. 农业机械学报, 2014, 45(9): 44−54. doi: 10.6041/j.issn.1000-1298.2014.09.008

    Ji C Y, Zhou J. Current situation of navigation technologies for agricultural machinery[J]. Trans Chin Soc Agric Mach, 2014, 45(9): 44−54. doi: 10.6041/j.issn.1000-1298.2014.09.008

    [2]

    赵佳琦, 周勇, 何欣, 等. 基于深度学习的点云分割研究进展分析[J]. 电子与信息学报, 2022, 44(12): 4426−4440. doi: 10.11999/JEIT210972

    Zhao J Q, Zhou Y, He X, et al. Research progress analysis of point cloud segmentation based on deep learning[J]. J Electron Inf Technol, 2022, 44(12): 4426−4440. doi: 10.11999/JEIT210972

    [3]

    Su H, Maji S, Kalogerakis E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]//2015 IEEE International Conference on Computer Vision, 2015: 945–953. https://doi.org/10.1109/ICCV.2015.114.

    [4]

    Maturana D, Scherer S. VoxNet: a 3D convolutional neural network for real-time object recognition[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015: 922–928. https://doi.org/10.1109/IROS.2015.7353481.

    [5]

    Qi C R, Su H, Mo K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 77–85. https://doi.org/10.1109/CVPR.2017.16.

    [6]

    Qi C R, Yi L, Su H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 5105–5114.

    [7]

    金立生, 贺阳, 王欢欢, 等. 基于自适应阈值DBSCAN的路侧点云分割算法[J]. 汽车工程, 2022, 44(7): 987−996. doi: 10.19562/j.chinasae.qcgc.2022.07.005

    Jin L S, He Y, Wang H H, et al. Point cloud segmentation algorithm based on adaptive threshold DBSCAN for roadside LiDAR[J]. Automot Eng, 2022, 44(7): 987−996. doi: 10.19562/j.chinasae.qcgc.2022.07.005

    [8]

    王子洋, 李琼琼, 张子蕴, 等. 应用于无人驾驶车辆的点云聚类算法研究进展[J]. 世界科技研究与发展, 2021, 43(3): 274−285. doi: 10.16507/j.issn.1006-6055.2020.12.025.

    Wang Z Y, Li Q Q, Zhang Z Y, et al. Research progress of unmanned vehicle point cloud clustering algorithm[J]. World Sci-Tech R& D, 2021, 43(3): 274−285. doi: 10.16507/j.issn.1006-6055.2020.12.025.

    [9]

    魏玉锋, 梁冬泰, 梁丹, 等. 基于多模态信息的机器人视觉识别与定位研究[J]. 光电工程, 2018, 45(2): 170650. doi: 10.12086/oee.2018.170650

    Wei Y F, Liang D T, Liang D, et al. Visual identification and location algorithm for robot based on the multimodal information[J]. Opto-Electron Eng, 2018, 45(2): 170650. doi: 10.12086/oee.2018.170650

    [10]

    杨俊闯, 赵超. K-Means聚类算法研究综述[J]. 计算机工程与应用, 2019, 55(23): 7−14,63. doi: 10.3778/j.issn.1002-8331.1908-0347

    Yang J C, Zhao C. Survey on K-means clustering algorithm[J]. Comput Eng Appl, 2019, 55(23): 7−14,63. doi: 10.3778/j.issn.1002-8331.1908-0347

    [11]

    李沛婷, 赵庆展, 田文忠, 等. 结合无人机载LiDAR点云法向量的K-means++聚类精简[J]. 国土资源遥感, 2020, 32(2): 103−110. doi: 10.6046/gtzyyg.2020.02.14

    Li P T, Zhao Q Z, Tian W Z, et al. Point cloud simplification method combining K-means++ clustering with UAV LiDAR point cloud normal vectors[J]. Remote Sens Land Resour, 2020, 32(2): 103−110. doi: 10.6046/gtzyyg.2020.02.14

    [12]

    刘亚坤, 李永强, 刘会云, 等. 基于改进RANSAC算法的复杂建筑物屋顶点云分割[J]. 地球信息科学学报, 2021, 23(8): 1497−1507. doi: 10.12082/dqxxkx.2021.200742

    Liu Y K, Li Y Q, Liu H Y, et al. An improved RANSAC algorithm for point cloud segmentation of complex building roofs[J]. J Geo-Inf Sci, 2021, 23(8): 1497−1507. doi: 10.12082/dqxxkx.2021.200742

    [13]

    潘济宇, 张水强, 苏志龙, 等. 基于数字图像相关的水下螺旋桨三维变形测量[J]. 光学学报, 2021, 41(12): 1212001. doi: 10.3788/AOS202141.1212001

    Pan J Y, Zhang S Q, Su Z L, et al. Measuring three-dimensional deformation of underwater propellers based on digital image correlation[J]. Acta Opt Sin, 2021, 41(12): 1212001. doi: 10.3788/AOS202141.1212001

    [14]

    Yuan C J, Liu X Y, Hong X P, et al. Pixel-level extrinsic self calibration of high resolution LiDAR and camera in targetless environments[J]. IEEE Robot Autom Lett, 2021, 6(4): 7517−7524. doi: 10.1109/LRA.2021.3098923

    [15]

    许德刚, 王露, 李凡. 深度学习的典型目标检测算法研究综述[J]. 计算机工程与应用, 2021, 57(8): 10−25. doi: 10.3778/j.issn.1002-8331.2012-0449

    Li D G, Wang L, Li F. Review of typical object detection algorithms for deep learning[J]. Comput Eng Appl, 2021, 57(8): 10−25. doi: 10.3778/j.issn.1002-8331.2012-0449

  • 加载中

(12)

(4)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2022-06-30
修回日期:  2022-10-15
录用日期:  2022-11-28
网络出版日期:  2023-02-16
刊出日期:  2023-02-16

目录

/

返回文章
返回