高精度水下激光频率传递研究进展

侯冬,任军委,郭广坤,等. 高精度水下激光频率传递研究进展[J]. 光电工程,2023,50(2): 220149. doi: 10.12086/oee.2023.220149
引用本文: 侯冬,任军委,郭广坤,等. 高精度水下激光频率传递研究进展[J]. 光电工程,2023,50(2): 220149. doi: 10.12086/oee.2023.220149
Hou D, Ren J W, Guo G K, et al. Progress on high-precision laser-based underwater frequency transfer[J]. Opto-Electron Eng, 2023, 50(2): 220149. doi: 10.12086/oee.2023.220149
Citation: Hou D, Ren J W, Guo G K, et al. Progress on high-precision laser-based underwater frequency transfer[J]. Opto-Electron Eng, 2023, 50(2): 220149. doi: 10.12086/oee.2023.220149

高精度水下激光频率传递研究进展

  • 基金项目:
    国家自然科学基金资助项目 (61871084,62271109);四川省应用基础研究项目 (2019YJ0200);军委装备发展部预研共用技术项目 (315067206,315067207)
详细信息
    作者简介:
    *通讯作者: 侯冬,houdong@uestc.edu.cn
  • 中图分类号: TN929.1

Progress on high-precision laser-based underwater frequency transfer

  • Fund Project: National Natural Science Foundation of China (61871084, 62271109), Applied Basic Research Program of Sichuan Province (2019YJ0200), and Equipment Advance Research Field Foundation (315067206, 315067207), China.
More Information
  • 相比于传统基于声纳、光缆的水下频率传递技术,水下激光频率传递技术具有更高的灵活性。本文首先介绍了水下激光频率传递技术的背景与意义,同时简要展示了国内外科研机构在水下激光频率传递方面的成果。然后,从理论上描述了水下链路特性的时域和频域特性,前者基于水体折射率微扰,后者基于柯尔莫哥洛夫大气湍流模型。接着,重点报道了电子科技大学在该领域的研究进展,包括电学相位补偿技术、光学相位补偿技术和多址频率分发技术。最后总结了这三类水下频率传递实验,对课题组在水下激光频率传递方面将要进行的工作进行了展望。作为具有较大潜力的水下频率传递技术,未来水下激光频率传递技术将在相关应用中发挥重要作用。

  • 加载中
  • 图 1  水下时频网络

    Figure 1.  Underwater time-frequency networks

    图 2  水下激光频率传递系统

    Figure 2.  Configuration of a underwater frequency transfer system

    图 3  定时抖动PSD仿真结果[39]。曲线(i)-(iii)由Kolmogorov模型计算;曲线(iv)-(vi)由von Kármán模型计算

    Figure 3.  Simulation results of timing jitter PSD[39]. Curves (i)–(iii) are calculated from the Kolmogorov model; Curves (iv)–(vi) are calculated from the von Kármán model

    图 4  定时抖动曲线[49]。(a) 链路长度为3 m;(b) 链路长度为6 m;(c) 链路长度为9 m;(d) 测量本底

    Figure 4.  Timing fluctuation curves [49]. (a) Timing fluctuation of the underwater transmission link of 3 m; (b) Timing fluctuation of the underwater transmission link of 6 m; (c) Timing fluctuation of the underwater transmission link of 9 m; (d) Measurement floor for a short link

    图 5  基于电学相位补偿技术的水下激光频率传递[50]。PS: 移相器;CW: 连续波;PD:光电探测器;PI:比例-积分控制器;HM:半反射镜

    Figure 5.  Laser-based underwater frequency transfer based on electronic phase compensation technique [50]. PS: phase shifter; CW: continuous wave; PD: photodetector; PI: proportion–integration controller; HM: half reflected mirror

    图 6  实验结果[50]。(a) 定时抖动曲线:(i)-无补偿;(ii)-有补偿;(iii)-测量本底;(b) 阿伦方差曲线:(i)-无补偿;(ii)-有补偿;(iii)-测量本底

    Figure 6.  Experimental results [50]. (a) Timing fluctuation curves: (i)-without compensation; (ii)-with compensation; (iii)-measurement floor; (b) Allan deviation curves: (i)-without compensation; (ii)-with compensation; (iii)-measurement floor

    图 7  基于光学相位补偿技术的水下激光频率传递[51]。CW: 连续波;λ/2:半波片;PBS: 偏振分束器;λ/4:四分之一波片;PD:光电探测器;PI:比例-积分控制器;HM:半反射镜

    Figure 7.  Laser-based underwater frequency transfer based on optical phase compensation technique [51]. CW: continuous wave; λ/2: half-wave plate; PBS: polarization beam splitter; λ/4: quarter-wave plate; PD: photodetector; PI: proportion–integration controller; HM: half reflected mirror

    图 8  实验结果[51]。(a) 定时抖动曲线:(i)-无补偿;(ii)-有补偿;(iii)-测量本底;(b) 阿伦方差曲线:(i)-无补偿;(ii)-有补偿;(iii)-测量本底

    Figure 8.  Experimental results [51]. (a) Timing fluctuation curves: (i)-without compensation; (ii)-with compensation; (iii)-measurement floor; (b) Allan deviation curves: (i)-without compensation; (ii)-with compensation; (iii)-measurement floor

    图 9  基于终端相位补偿技术的水下多址激光频率传递[56]。TX: 发送端;RX: 接收端;VCO: 压控振荡器;λ/2:半波片;PBS: 偏振分束器;λ/4:四分之一波片;PD:光电探测器;PI:比例-积分控制器

    Figure 9.  Laser-based multiple-access underwater frequency transfer based on terminal phase compensation technique [56]. TX: transmitting site; RX: receiving site; VCO: voltage-controlled oscillator; M1: mirror 1; M2: mirror 2; Mn: mirror n; λ/2: half-wave plate; PBS: polarization beam splitter; λ/4: quarter-wave plate; PD: photodiode; PI: proportion–integration controller

    图 10  实验结果[56]。(a) 定时抖动曲线:(i)-无补偿;(ii)-有补偿;(b) 阿伦方差曲线:(i)-自由运转的VCO B;(ii)-无补偿;(iii)-有补偿;(iv)-商用铯原子钟Microsemi-5071A

    Figure 10.  Experimental results [56]. (a) Timing fluctuation curves: (i)-without compensation; (ii)-with compensation; (b) Allan deviation curves: (i)-free running VCO B; (ii)-without compensation; (iii)-with compensation; (iv)-commercial Cs clock Microsemi-5071A

  • [1]

    Kaushal H, Kaddoum G. Underwater optical wireless communication[J]. IEEE Access, 2016, 4: 1518−1547. doi: 10.1109/ACCESS.2016.2552538

    [2]

    Arnon S. Underwater optical wireless communication network[J]. Opt Eng, 2010, 49(1): 015001. doi: 10.1117/1.3280288

    [3]

    Johnson L J, Jasman F, Green R J, et al. Recent advances in underwater optical wireless communications[J]. Underwater Technol, 2014, 32(3): 167−175. doi: 10.3723/ut.32.167

    [4]

    Kojima N, Yabuta T, Negishi Y, et al. Submarine optical fiber cable: development and laying results[J]. Appl Opt, 1982, 21(5): 815−821. doi: 10.1364/AO.21.000815

    [5]

    Nyman B. Flexibility in submarine fiber optic networks [Invited][J]. J Opt Commun Networking, 2015, 7(3): A553−A557. doi: 10.1364/JOCN.7.00A553

    [6]

    Stojanovic M. Recent advances in high-speed underwater acoustic communications[J]. IEEE J Ocean Eng, 1996, 21(2): 125−136. doi: 10.1109/48.486787

    [7]

    Stojanovic M, Preisig J. Underwater acoustic communication channels: propagation models and statistical characterization[J]. IEEE Commun Mag, 2009, 47(1): 84−89. doi: 10.1109/MCOM.2009.4752682

    [8]

    Al-Shamma’a A I, Shaw A, Saman S. Propagation of electromagnetic waves at MHz frequencies through seawater[J]. IEEE Trans Antennas Propag, 2004, 52(11): 2843−2849. doi: 10.1109/TAP.2004.834449

    [9]

    Hale G M, Querry M R. Optical constants of water in the 200-nm to 200-μm wavelength region[J]. Appl Opt, 1973, 12(3): 555−563. doi: 10.1364/AO.12.000555

    [10]

    Mullen L J, Vieira A J C, Herezfeld P R, et al. Application of RADAR technology to aerial LIDAR systems for enhancement of shallow underwater target detection[J]. IEEE Trans Microwave Theory Tech, 1995, 43(9): 2370−2377. doi: 10.1109/22.414591

    [11]

    迟楠, 王超凡, 李韦萍, 等. 基于蓝绿光LED的水下可见光通信技术研究进展[J]. 复旦学报(自然科学版), 2019, 58(5): 537−548. doi: 10.15943/j.cnki.fdxb-jns.2019.05.001

    Chi N, Wang C F, Li W P, et al. Research progress of underwater visible light communication technology based on blue/green LED[J]. J Fudan Univ Nat Sci, 2019, 58(5): 537−548. doi: 10.15943/j.cnki.fdxb-jns.2019.05.001

    [12]

    Hanson F, Radic S. High bandwidth underwater optical communication[J]. Appl Opt, 2008, 47(2): 277−283. doi: 10.1364/AO.47.000277

    [13]

    Cochenour B, Mullen L, Muth J. Modulated pulse laser with pseudorandom coding capabilities for underwater ranging, detection, and imaging[J]. Appl Opt, 2011, 50(33): 6168−6178. doi: 10.1364/AO.50.006168

    [14]

    Pellen F, Jezequel V, Zion G, et al. Detection of an underwater target through modulated lidar experiments at grazing incidence in a deep wave basin[J]. Appl Opt, 2012, 51(31): 7690−7700. doi: 10.1364/AO.51.007690

    [15]

    Cochenour B, Mullen L, Muth J. Temporal response of the underwater optical channel for high-bandwidth wireless laser communications[J]. IEEE J Ocean Eng, 2013, 38(4): 730−742. doi: 10.1109/JOE.2013.2255811

    [16]

    张雨凡, 李鑫, 吕伟超, 等. 水下无线光通信链路构成与性能优化进展[J]. 光电工程, 2020, 47(9): 190734. doi: 10.12086/oee.2020.190734

    Zhang Y F, Li X, Lv W C, et al. Link structure of underwater wireless optical communication and progress on performance optimization[J]. Opto-Electron Eng, 2020, 47(9): 190734. doi: 10.12086/oee.2020.190734

    [17]

    马春波, 王永辉, 敖珺, 等. 水下短距离高速激光通信系统的研究与实现[J]. 光通信技术, 2016, 40(4): 52−55. doi: 10.13921/j.cnki.issn1002-5561.2016.04.017

    Ma C B, Wang Y H, Ao J, et al. Research and implementation of underwater short-distance high-speed laser communication system[J]. Opt Commun Technol, 2016, 40(4): 52−55. doi: 10.13921/j.cnki.issn1002-5561.2016.04.017

    [18]

    Liu J, Zhou Z, Peng Z, et al. Mobi-sync: efficient time synchronization for mobile underwater sensor networks[J]. IEEE Trans Parallel Distrib Syst, 2013, 24(2): 406−416. doi: 10.1109/TPDS.2012.71

    [19]

    Liu J, Wang Z H, Cui J H, et al. A joint time synchronization and localization design for mobile underwater sensor networks[J]. IEEE Trans Mobile Comput, 2016, 15(3): 530−543. doi: 10.1109/TMC.2015.2410777

    [20]

    Sprenger B, Zhang J, Lu Z H, et al. Atmospheric transfer of optical and radio frequency clock signals[J]. Opt Lett, 2009, 34(7): 965−967. doi: 10.1364/OL.34.000965

    [21]

    Giorgetta F R, Swann W C, Sinclair L C, et al. Optical two-way time and frequency transfer over free space[J]. Nat Photonics, 2013, 7(6): 434−438. doi: 10.1038/nphoton.2013.69

    [22]

    Chen S J, Sun F Y, Bai Q S, et al. Sub-picosecond timing fluctuation suppression in laser-based atmospheric transfer of microwave signal using electronic phase compensation[J]. Opt Commun, 2017, 401: 18−22. doi: 10.1016/j.optcom.2017.05.029

    [23]

    Sun F Y, Hou D, Zhang D N, et al. Femtosecond-level timing fluctuation suppression in atmospheric frequency transfer with passive phase conjunction correction[J]. Opt Express, 2017, 25(18): 21312−21320. doi: 10.1364/OE.25.021312

    [24]

    Bergeron H, Sinclair L C, Swann W C, et al. Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path[J]. Optica, 2016, 3(4): 441−447. doi: 10.1364/OPTICA.3.000441

    [25]

    Sinclair L C, Bergeron H, Swann W C, et al. Comparing optical oscillators across the air to milliradians in phase and 10–17 in frequency[J]. Phys Rev Lett, 2018, 120(5): 050801. doi: 10.1103/PhysRevLett.120.050801

    [26]

    Caldwell E D, Swann W C, Ellis J L, et al. Optical timing jitter due to atmospheric turbulence: comparison of frequency comb measurements to predictions from micrometeorological sensors[J]. Opt Express, 2020, 28(18): 26661−26675. doi: 10.1364/OE.400434

    [27]

    Bodine M I, Ellis J L, Swann W C, et al. Optical time-frequency transfer across a free-space, three-node network[J]. APL Photonics, 2020, 5(7): 076113. doi: 10.1063/5.0010704

    [28]

    Dai H, Shen Q, Wang C Z, et al. Towards satellite-based quantum-secure time transfer[J]. Nat Phys, 2020, 16(8): 848−852. doi: 10.1038/s41567-020-0892-y

    [29]

    Kang H J, Yang J, Chun B J, et al. Free-space transfer of comb-rooted optical frequencies over an 18 km open-air link[J]. Nat Commun, 2019, 10(1): 4438. doi: 10.1038/s41467-019-12443-8

    [30]

    Dix-Matthews B P, Schediwy S W, Gozzard D R, et al. Point-to-point stabilized optical frequency transfer with active optics[J]. Nat Commun, 2021, 12(1): 515. doi: 10.1038/s41467-020-20591-5

    [31]

    Gozzard D R, Howard L A, Dix-Matthews B P, et al. Ultrastable free-space laser links for a global network of optical atomic clocks[J]. Phys Rev Lett, 2022, 128(2): 020801. doi: 10.1103/PhysRevLett.128.020801

    [32]

    Mullen L, Laux A, Cochenour B. Propagation of modulated light in water: implications for imaging and communications systems[J]. Appl Opt, 2009, 48(14): 2607−2612. doi: 10.1364/AO.48.002607

    [33]

    Mullen L, Alley D, Cochenour B. Investigation of the effect of scattering agent and scattering albedo on modulated light propagation in water[J]. Appl Opt, 2011, 50(10): 1396−1404. doi: 10.1364/AO.50.001396

    [34]

    Cochenour B, Dunn K, Laux A, et al. Experimental measurements of the magnitude and phase response of high-frequency modulated light underwater[J]. Appl Opt, 2017, 56(14): 4019−4024. doi: 10.1364/AO.56.004019

    [35]

    Lee R W, Laux A, Mullen L J. Hybrid technique for enhanced optical ranging in turbid water environments[J]. Opt Eng, 2013, 53(5): 051404. doi: 10.1117/1.OE.53.5.051404

    [36]

    Luchinin A G, Kirillin M Y. Temporal and frequency characteristics of a narrow light beam in sea water[J]. Appl Opt, 2016, 55(27): 7756−7762. doi: 10.1364/AO.55.007756

    [37]

    Nootz G, Matt S, Kanaev A, et al. Experimental and numerical study of underwater beam propagation in a Rayleigh-Bénard turbulence tank[J]. Appl Opt, 2017, 56(22): 6065−6072. doi: 10.1364/AO.56.006065.

    [38]

    Nakamura K, Mizukoshi I, Hanawa M. Optical wireless transmission of 405 nm, 1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel[J]. Opt Express, 2015, 23(2): 1558−1566. doi: 10.1364/OE.23.001558

    [39]

    Xu J, Kong M W, Lin A B, et al. OFDM-based broadband underwater wireless optical communication system using a compact blue LED[J]. Opt Commun, 2016, 369: 100−105. doi: 10.1016/j.optcom.2016.02.044

    [40]

    Liu X Y, Yi S Y, Zhou X L, et al. 34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation[J]. Opt Express, 2017, 25(22): 27937−27947. doi: 10.1364/OE.25.027937

    [41]

    Liu X Y, Yi S Y, Zhou X L, et al. Laser-based white-light source for high-speed underwater wireless optical communication and high-efficiency underwater solid-state lighting[J]. Opt Express, 2018, 26(15): 19259−19274. doi: 10.1364/OE.26.019259.

    [42]

    Nootz G, Jarosz E, Dalgleish F R, et al. Quantification of optical turbulence in the ocean and its effects on beam propagation[J]. Appl Opt, 2016, 55(31): 8813−8820. doi: 10.1364/AO.55.008813

    [43]

    俞雪平, 胡云安, 刘亮, 等. 基于多次散射和小散射角近似的水下激光传播特性[J]. 光子学报, 2015, 44(11): 1101002. doi: 10.3788/gzxb20154411.1101002

    Yu X P, Hu Y A, Liu L, et al. Propagation characteristics of underwater laser based on multiple scattering and small scattering angles approximation[J]. Acta Photonica Sin, 2015, 44(11): 1101002. doi: 10.3788/gzxb20154411.1101002

    [44]

    Liu W H, Xu Z Y, Yang L Q. SIMO detection schemes for underwater optical wireless communication under turbulence[J]. Photonics Res, 2015, 3(3): 48−53. doi: 10.1364/PRJ.3.000048

    [45]

    Sinclair L C, Giorgetta F R, Swann W C, et al. Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer[J]. Phys Rev A, 2014, 89(2): 023805. doi: 10.1103/PhysRevA.89.023805

    [46]

    Fante R L. Electromagnetic beam propagation in turbulent media[J]. Proc IEEE, 1975, 63(12): 1669−1692. doi: 10.1109/PROC.1975.10035

    [47]

    Harvey A H, Gallagher J S, Sengers J M H L. Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density[J]. J Phys Chem Ref Data, 1998, 27(4): 761−774. doi: 10.1063/1.556029

    [48]

    Quan X H, Fry E S. Empirical equation for the index of refraction of seawater[J]. Appl Opt, 1995, 34(18): 3477−3480. doi: 10.1364/AO.34.003477

    [49]

    Hou D, Chen J Y, Guo G K. Analysis and experimental demonstration of underwater frequency transfer with diode green laser[J]. Rev Sci Instrum, 2020, 91(7): 075102. doi: 10.1063/5.0006328

    [50]

    Hou D, Bai Q S, Guo G K, et al. Highly-stable laser-based underwater radio-frequency transfer with electronic phase compensation[J]. Opt Commun, 2019, 452: 247−251. doi: 10.1016/j.optcom.2019.07.012

    [51]

    Hou D. Laser-based underwater frequency transfer with sub-picosecond timing fluctuation using optical phase compensation[J]. Opt Express, 2020, 28(22): 33298−33306. doi: 10.1364/OE.403189

    [52]

    Hou D, Zhang D N, Sun F Y, et al. Free-space-based multiple-access frequency dissemination with optical frequency comb[J]. Opt Express, 2018, 26(15): 19199−19205. doi: 10.1364/OE.26.019199

    [53]

    Wang B, Zhu X, Gao C, et al. Square kilometre array telescope—precision reference frequency synchronisation via 1f-2f dissemination[J]. Sci Rep, 2015, 5(1): 13851. doi: 10.1038/srep13851

    [54]

    Grosche G. Eavesdropping time and frequency: phase noise cancellation along a time-varying path, such as an optical fiber[J]. Opt Lett, 2014, 39(9): 2545−2548. doi: 10.1364/OL.39.002545

    [55]

    Bai Y, Wang B, Zhu X, et al. Fiber-based multiple-access optical frequency dissemination[J]. Opt Lett, 2013, 38(17): 3333−3335. doi: 10.1364/OL.38.003333

    [56]

    Ren J W, Hou D, Gao Y F, et al. Highly stable multiple-access underwater frequency transfer with terminal phase compensation[J]. Opt Lett, 2021, 46(19): 4745−4748. doi: 10.1364/OL.435967

  • 加载中

(10)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2022-06-30
修回日期:  2022-12-19
录用日期:  2022-12-23
网络出版日期:  2023-02-16
刊出日期:  2023-02-25

目录

/

返回文章
返回