角度差异强化的光场图像超分网络

吕天琪,武迎春,赵贤凌. 角度差异强化的光场图像超分网络[J]. 光电工程,2023,50(2): 220185. doi: 10.12086/oee.2023.220185
引用本文: 吕天琪,武迎春,赵贤凌. 角度差异强化的光场图像超分网络[J]. 光电工程,2023,50(2): 220185. doi: 10.12086/oee.2023.220185
Lv T Q, Wu Y C, Zhao X L. Light field image super-resolution network based on angular difference enhancement[J]. Opto-Electron Eng, 2023, 50(2): 220185. doi: 10.12086/oee.2023.220185
Citation: Lv T Q, Wu Y C, Zhao X L. Light field image super-resolution network based on angular difference enhancement[J]. Opto-Electron Eng, 2023, 50(2): 220185. doi: 10.12086/oee.2023.220185

角度差异强化的光场图像超分网络

  • 基金项目:
    国家自然科学基金资助项目 (61601318);山西省基础研究计划资助项目 (202103021224278);山西省回国留学人员科研资助项目 (2020-128)
详细信息
    作者简介:
    *通讯作者: 武迎春,yingchunwu3030@foxmail.com
  • 中图分类号: TP391.4

Light field image super-resolution network based on angular difference enhancement

  • Fund Project: National Natural Science Foundation of China (61601318), the Basic Research Project of Shanxi Province (202103021224278), and Research Project Supported by Shanxi Scholarship Council of China (2020-128)
More Information
  • 由于采用了更为先进的成像技术,光场相机可以同步获取场景的空间信息与角度信息。该技术以牺牲空间分辨率为代价,实现了更高维度的场景表示。为了提高光场相机拍摄场景的空间分辨率,本文搭建了角度差异强化的光场超分辨率重构网络。该网络先采用8个多分支残差块实现浅层特征提取,再采用4个强化的角度可变形对准模块实现深层特征提取,最后采用6个简化的残差特征蒸馏模块和像素洗牌模块完成数据重构。所提网络在利用光场角度差异完成空间信息超分时,更加强调视图自身特征的深入挖掘,以获得更加丰富的视图间差异特征。在5组公开的光场数据集上对本文所提网络的性能进行了验证,本文算法获得了PSNR、SSIM值更高的高分辨率光场子孔径图像。

  • 加载中
  • 图 1  4D 光场获取与重排。 (a) 光场双平面表示模型;(b) 子孔径图像阵列;(c) 宏像素阵列

    Figure 1.  4D light field acquisition and rearrangement. (a) Biplanar representation model of light field; (b) Subaperture image array; (c) Macropixel array

    图 2  整体网络结构图

    Figure 2.  Overall network structure diagram

    图 3  多分支残差块

    Figure 3.  Multi-branch residual block

    图 4  ADA 模块细节。(a) ADA 模块数据处理流程;(b) 特征收集(collect);(c) 特征收集中偏移 量的获取;(d)中心视图的更新;(e) 特征发散(distribute);(f) 特征发散中偏移量的获取

    Figure 4.  ADA module details. (a) ADA module data processing process; (b) Feature collection; (c) Offset acquisition in feature collection; (d) Update the central view; (e) Feature distribution; (f) Offset acquisition in feature distribution

    图 5  EADA 模块细节。(a) EADA 特征收集细节;(b) EADA 特征发散细节

    Figure 5.  EADA module details. (a) EADA feature collection details; (b) EADA feature distribution details

    图 6  RFD 模块的简化。(a) RFD 模块细节;(b) SRFD 模块细节

    Figure 6.  RFD module simplification. (a) RFD module details; (b) SRFD module details

    图 7  “Origami”场景 2 倍超分的视觉效果对比

    Figure 7.  Visual contrast of the "Origami" scene with 2× SR

    图 8  “Herbs”场景 2 倍超分的视觉效果对比

    Figure 8.  Visual contrast of the "Herbs" scene with 2× SR

    图 9  “Bee”场景 4 倍超分的视觉效果对比

    Figure 9.  Visual contrast of the "Bee" scene with 4× SR

    图 10  “Lego Knights”场景 4 倍超分的视觉效果对比

    Figure 10.  Visual contrast of the "Lego Knights" scene with 4× SR

    表 1  实验使用的5个公共光场数据集

    Table 1.  Five public light field datasets used in our experiment

    数据集EPFL[13]HCInew[14]HCIold[15]INRIA[16]STFgantry[17]总共
    #训练702010359144
    #测试10425223
    下载: 导出CSV

    表 2  基于不同浅层特征提取模块的光场图像4倍超分PSNR/SSIM值

    Table 2.  PSNR/SSIM values achieved by different shallow feature extraction modules for 4× SR

    模型EPFL[13]HCInew[14]HCIold[15]INRIA[16]STFgantry[17]
    无残差25.26/0.832427.71/0.851732.58/0.934426.95/0.886726.09/0.8452
    MBR28.81/0.919031.30/0.920637.39/0.972530.81/0.951331.29/0.9511
    下载: 导出CSV

    表 3  基于不同深层特征提取模块的光场图像4倍超分PSNR/SSIM值

    Table 3.  PSNR/SSIM values achieved by different deep feature extraction modules for 4× SR

    模型EPFL[13]HCInew[14]HCIold[15]INRIA[16]STFgantry[17]
    ADA模块28.77/0.917231.26/0.919837.41/0.972330.80/0.950731.17/0.9497
    单支路EADA模块28.78/0.916631.21/0.918637.31/0.971730.85/0.950231.03/0.9474
    EADA模块28.81/0.919031.30/0.920637.39/0.972530.81/0.951331.29/0.9511
    下载: 导出CSV

    表 4  基于不同特征融合模块的光场图像4倍超分PSNR/SSIM值

    Table 4.  PSNR/SSIM values achieved by different feature fusion modules for 4× SR

    模型EPFL[13]HCInew[14]HCIold[15]INRIA[16]STFgantry[17]
    RFD模块29.01/0.918331.32/0.919837.39/0.971831.08/0.950931.14/0.9499
    SRFD模块28.81/0.919031.30/0.920637.39/0.972530.81/0.951331.29/0.9511
    下载: 导出CSV

    表 5  不同算法对光场图像2倍超分PSNR/SSIM值

    Table 5.  PSNR/SSIM values achieved by different methods for 2× SR

    超分方法EPFL[13]HCInew[14]HCIold[15]INRIA[16]STFgantry[17]Average
    EDSR[20]33.09/0.963134.83/0.959441.01/0.987534.97/0.976536.29/0.981936.04/0.9728
    RCAN[21]33.16/0.963534.98/0.960241.05/0.987535.01/0.976936.33/0.982536.11/0.9741
    ResLF[8]32.75/0.967236.07/0.971542.61/0.992234.57/0.978436.89/0.987336.58/0.9793
    LFSSR[7]33.69/0.974836.86/0.975343.75/0.993935.27/0.983438.07/0.990237.53/0.9835
    LF-InterNet[4]34.14/0.976137.28/0.976944.45/0.994535.80/0.984638.72/0.991638.08/0.9847
    LF-DFnet[5]34.44/0.976637.44/0.978644.23/0.994336.36/0.984139.61/0.993538.42/0.9854
    本文方法34.58/0.977237.92/0.979644.84/0.994836.59/0.985440.11/0.993938.81/0.9862
    下载: 导出CSV

    表 6  不同算法对光场图像4倍超分PSNR/SSIM值

    Table 6.  PSNR/SSIM values achieved by different methods for 4× SR

    超分方法EPFL[13]HCInew[14]HCIold[15]INRIA[16]STFgantry[17]Average
    EDSR[20]27.84/0.885829.60/0.887435.18/0.953829.66/0.925928.70/0.907530.20/0.9121
    RCAN[21]27.88/0.886329.63/0.888035.20/0.954029.76/0.927328.90/0.911030.27/0.9133
    ResLF[8]27.46/0.889929.92/0.901136.12/0.965129.64/0.933928.99/0.921430.43/0.9223
    LFSSR[7]28.27/0.908030.72/0.912436.70/0.969030.31/0.944630.15/0.938531.23/0.9345
    LF-InterNet[4]28.67/0.914330.98/0.916537.11/0.971530.64/0.948630.53/0.942631.59/0.9387
    LF-DFnet[5]28.77/0.916531.23/0.919637.32/0.971830.83/0.950331.15/0.949431.86/0.9415
    本文方法28.81/0.919031.30/0.920637.39/0.972530.81/0.951331.29/0.951131.92/0.9429
    下载: 导出CSV

    表 7  不同算法(2倍超分/4倍超分)复杂度对比

    Table 7.  Comparisons of the number of parameters and FLOPs by different methods for 2× SR and 4× SR

    MethodParameters/MFLOPs/G
    EDSR[20]38.62/38.8939.56×25/40.66×25
    RCAN[21]15.31/15.3615.59×25/15.65×25
    ResLF[8]6.35/6.7937.06/39.70
    LFSSR[7]0.81/1.6125.70/128.44
    LF-InterNet[4]4.80/5.2347.46/50.10
    LF-DFnet[5]3.94/3.9957.22/57.31
    本文方法12.74/12.80238.92/240.51
    下载: 导出CSV
  • [1]

    Ng R, Levoy M, Brédif M, et al. Light field photography with a hand-held plenoptic camera[J]. Comput Sci Tech Rep CSTR, 2005, 2(11): 1−11.

    [2]

    Tao M W, Hadap S, Malik J, et al. Depth from combining defocus and correspondence using light-field Cameras[C]//Proceedings of 2013 IEEE International Conference on Computer Vision, Sydney, 2013: 673–680. https://doi.org/10.1109/ICCV.2013.89.

    [3]

    Levoy M, Hanrahan P. Light field rendering[C]//Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, New York, 1996: 31–42. https://doi.org/10.1145/237170.237199.

    [4]

    Wang Y Q, Wang L G, Yang J G, et al. Spatial-angular interaction for light field image super-resolution[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, 2020: 290–308. https://doi.org/10.1007/978-3-030-58592-1_18.

    [5]

    Wang Y Q, Yang J G, Wang L G, et al. Light field image super-resolution using deformable convolution[J]. IEEE Trans Image Process, 2020, 30: 1057−1071. doi: 10.1109/TIP.2020.3042059

    [6]

    Mo Y, Wang Y Q, Xiao C, et al. Dense dual-attention network for light field image super-resolution[J]. IEEE Trans Circuits Syst Video Technol, 2022, 32(7): 4431−4443. doi: 10.1109/TCSVT.2021.3121679

    [7]

    Yeung H W F, Hou J H, Chen X M, et al. Light field spatial super-resolution using deep efficient spatial-angular separable convolution[J]. IEEE Trans Image Process, 2019, 28(5): 2319−2330. doi: 10.1109/TIP.2018.2885236

    [8]

    Zhang S, Lin Y F, Sheng H. Residual networks for light field image super-resolution[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, 2019: 11046–11055. https://doi.org/10.1109/CVPR.2019.01130.

    [9]

    Jin J, Hou J H, Chen J, et al. Light field spatial super-resolution via deep combinatorial geometry embedding and structural consistency regularization[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 2020: 2260−2269. https://doi.org/10.1109/CVPR42600.2020.00233.

    [10]

    Liang Z Y, Wang Y Q, Wang L G, et al. Angular-flexible network for light field image super-resolution[J]. Electron Lett, 2021, 57(24): 921−924. doi: 10.1049/ell2.12312

    [11]

    赵圆圆, 施圣贤. 融合多尺度特征的光场图像超分辨率方法[J]. 光电工程, 2020, 47(12): 200007. doi: 10.12086/oee.2020.200007

    Zhao Y Y, Shi S X. Light-field image super-resolution based on multi-scale feature fusion[J]. Opto-Electron Eng, 2020, 47(12): 200007. doi: 10.12086/oee.2020.200007

    [12]

    Liu J, Tang J, Wu G S. Residual feature distillation network for lightweight image super-resolution[C]//Proceedings of the European Conference on Computer Vision, Glasgow, 2020: 41–55. https://doi.org/10.1007/978-3-030-67070-2_2.

    [13]

    Rerabek M, Ebrahimi T. New light field image dataset[C]//Proceedings of the 8th International Conference on Quality of Multimedia Experience, Lisbon, 2016.

    [14]

    Honauer K, Johannsen O, Kondermann D, et al. A dataset and evaluation methodology for depth estimation on 4D light fields[C]//Proceedings of the 13th Asian Conference on Computer Vision, Cham, 2016: 19–34. https://doi.org/10.1007/978-3-319-54187-7_2.

    [15]

    Wanner S, Meister S, Goldluecke B. Datasets and benchmarks for densely sampled 4D light fields[M]//Bronstein M, Favre J, Hormann K. Vision, Modeling and Visualization. Eurographics Association, 2013: 225–226. https://doi.org/10.2312/PE.VMV.VMV13.225-226.

    [16]

    Le Pendu M, Jiang X R, Guillemot C. Light field inpainting propagation via low rank matrix completion[J]. IEEE Trans Image Process, 2018, 27(4): 1981−1993. doi: 10.1109/TIP.2018.2791864

    [17]

    Vaish V, Adams A. The (new) Stanford light field archive, computer graphics laboratory, Stanford University[EB/OL]. 2008. http://lightfield.stanford.edu

    [18]

    Kingma D P, Ba J. Adam: a method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representations, San Diego, 2015.

    [19]

    He K M, Zhang X Y, Ren S Q, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[C]//Proceedings of 2015 International Conference on Computer Vision, Santiago, 2015: 1026–1034. https://doi.org/10.1109/ICCV.2015.123.

    [20]

    Lim B, Son S, Kim H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, 2017: 136−144. https://doi.org/10.1109/CVPRW.2017.151.

    [21]

    Zhang Y L, Li K P, Li K, et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, 2018: 294–310. https://doi.org/10.1007/978-3-030-01234-2_18.

  • 加载中

(10)

(7)

计量
  • 文章访问数:  4086
  • PDF下载数:  750
  • 施引文献:  0
出版历程
收稿日期:  2022-07-28
修回日期:  2022-10-17
录用日期:  2022-10-21
网络出版日期:  2023-02-16
刊出日期:  2023-02-25

目录

/

返回文章
返回