边界注意力辅助的动态图卷积视网膜血管分割

吕佳,王泽宇,梁浩城. 边界注意力辅助的动态图卷积视网膜血管分割[J]. 光电工程,2023,50(1): 220116. doi: 10.12086/oee.2023.220116
引用本文: 吕佳,王泽宇,梁浩城. 边界注意力辅助的动态图卷积视网膜血管分割[J]. 光电工程,2023,50(1): 220116. doi: 10.12086/oee.2023.220116
Lv J, Wang Z Y, Liang H C. Boundary attention assisted dynamic graph convolution for retinal vascular segmentation[J]. Opto-Electron Eng, 2023, 50(1): 220116. doi: 10.12086/oee.2023.220116
Citation: Lv J, Wang Z Y, Liang H C. Boundary attention assisted dynamic graph convolution for retinal vascular segmentation[J]. Opto-Electron Eng, 2023, 50(1): 220116. doi: 10.12086/oee.2023.220116

边界注意力辅助的动态图卷积视网膜血管分割

  • 基金项目:
    国家自然科学基金重大项目 (11991024);重庆市教委“成渝地区双城经济圈建设”科技创新项目 (KJCX2020024) ;重庆市教委重点项目 (KJZD-K202200511);重庆市科技局技术预见与制度创新项目 (2022TFII-OFX0265)
详细信息
    作者简介:
    *通讯作者: 吕佳,lvjia@cqnu.edu.cn
  • 中图分类号: TP183

Boundary attention assisted dynamic graph convolution for retinal vascular segmentation

  • Fund Project: National Natural Science Foundation Projects (11991024), Science and Technology Innovation Project of "Construction of Chengdu-Chongqing Twin Cities Economic Circle" (KJCX2020024), Chongqing Education Commission Key Project (KJZD-K202200511), and Technology Foresight and System Innovation Project of Chongqing Science and Technology Bureau (2022TFII-OFX0265)
More Information
  • 针对视网膜血管分割任务中存在的毛细血管分割遗漏和断连的问题,从最大限度地利用视网膜血管的特征信息的角度出发,添补视网膜血管的全局结构信息和边界信息,在U型网络的基础上,提出边界注意力辅助的动态图卷积视网膜血管分割网络。本模型先将动态图卷积嵌入到U型网络中形成多尺度结构,提升模型获取全局结构信息的能力,以提高分割质量,再利用边界注意力网络辅助模型,增加模型对边界信息的关注度,进一步提高分割性能。将模型在DRIVE、CHASEDB1和STARE三个视网膜图像数据集上进行实验,均取得了较好的分割效果。实验结果证明,该模型能较好地区分噪声和毛细血管,分割出结构较完整的视网膜血管,具有泛化性和鲁棒性。

  • 加载中
  • 图 1  边界注意力辅助的动图卷积U型网络

    Figure 1.  Boundary attention assisted dynamic graph convolution U-shaped network

    图 2  动态图原理

    Figure 2.  Principle of dynamic graph

    图 3  动态图卷积计算过程和特征融合网络。(a) 动态图卷积计算过程;(b) 特征融合网络

    Figure 3.  Dynamic graph convolution calculation process and Feature fusion network. (a) Dynamic graph convolution calculation process; (b) Feature fusion network

    图 4  视网膜图像

    Figure 4.  Retina image

    图 5  数据预处理结果图。(a) 预处理图像切片;(b) 真实标注切片

    Figure 5.  Data preprocessing results. (a) Pre-processed image slices; (b) Ground truth slices

    图 6  消融实验效果对比图。(a) 原图及原图细节;(b) 真实标注;(c) U-Net;(d) DGU-Net;(e) BU-Net;(f) BDGU-Net

    Figure 6.  Comparison of ablation results. (a) Original image and details; (b) Ground truth; (c) U-Net; (d) DGU-Net; (e) BU-Net; (f) BDGU-Net

    图 7  不同网络效果对比图。(a) 原图及原图细节;(b) 真实标注;(c) Iternet;(d) MLA-DU-Net;(e) Res2Unet;(f) BDGU-Net

    Figure 7.  Comparison of ablation results. (a) Original image and details; (b) Ground truth; (c) Iternet; (d) MLA-DU-Net; (e) Res2Unet; (f) BDGU-Net

    表 1  评价指标

    Table 1.  Evaluation indexes

    F1SESPACC
    $\dfrac{{2 \times PR \times SE}}{{PR + SE}}$ $\dfrac{{TP}}{{TP{\text{ + }}FN}}$ $\dfrac{{TN}}{{TN + FP}}$ $\dfrac{{TP + TN}}{{TP + TN + FP + FN}}$
    下载: 导出CSV

    表 2  消融实验结果

    Table 2.  Ablation experiments results

    DatasetNetworkF1SESPACCAUCTime/s
    DRIVEU-Net0.83530.83300.97770.96010.98481.00
    DGU-Net
    0.83570.82750.97890.96050.98501.22
    BU-Net0.83550.83520.97730.96000.98491.00
    BDGU-Net0.83590.83000.97850.96040.98511.24
    CHASEDB1U-Net0.81080.80520.98200.96600.98541.31
    DGU-Net
    0.80530.78120.98420.96580.98461.73
    BU-Net0.81330.82100.98030.96590.98581.31
    BDGU-Net0.81360.81460.98130.96620.98561.76
    STAREU-Net0.78450.73800.98630.96480.98102.21
    DGU-Net
    0.78240.70450.99080.96600.98252.85
    BU-Net0.78450.73520.98680.96500.98062.21
    BDGU-Net0.79340.72730.99000.96720.98342.85
    下载: 导出CSV

    表 3  不同αβ系数取值分析

    Table 3.  Value analysis of different α and β coefficients

    αβF1SESPACCAUC
    0.8 0.20.83480.82520.97900.96040.9848
    0.7 0.30.83510.82300.97950.96050.9848
    0.6 0.40.83590.83000.97850.96040.9851
    0.5 0.50.83510.82840.97850.96030.9849
    下载: 导出CSV

    表 4  不同网络在DRIVE、CHASEDB1和STARE数据集的指标对比

    Table 4.  Index comparison of different networks in DRIVE, CHASEDB1 and STARE datasets

    DatasetNetworkYearF1SESPACCAUCTime/s
    DRIVE2nd Human Observer[20]0.77600.97240.9472
    Iternet[21]20200.83530.83700.97700.96000.98471.37
    Yang[22]20210.82970.83530.97510.9579
    MLA-DU-Net[23]20210.83520.82690.97880.96030.98491.64
    Res2Unet[24]20220.82920.83320.97560.95830.97821.21
    Zhang[15]20220.83490.83450.97730.96000.98501.20
    BDGU-Net20220.83590.83000.97850.96040.98511.24
    CHASEDB12nd Human Observer[20]0.81050.97110.9545
    Iternet[21]20200.81200.81440.98090.96580.98561.48
    Yang[22]20210.79970.81760.97760.9632
    MLA-DU-Net[23]20210.80630.81370.97960.96460.98412.13
    Res2Unet[24]20220.80710.84440.97530.96340.97941.47
    Zhang[15]20220.80500.81410.97920.96430.98411.72
    BDGU-Net20220.81360.81460.98130.96620.98561.76
    STARE2nd Human Observer[20]0.89520.93840.9349
    Iternet[21]20200.79620.74900.98740.96670.98382.76
    Yang[22]20210.81550.79460.98210.9626
    MLA-DU-Net[23]20210.79650.79250.98120.96490.98263.95
    Res2Unet[24]20220.78580.73920.98650.96500.97092.77
    Zhang[15]20220.78780.73810.98710.96550.98233.07
    BDGU-Net20220.79340.72730.99000.96720.98342.85
    下载: 导出CSV
  • [1]

    Wu H S, Wang W, Zhong J F, et al. SCS-net: a scale and context sensitive network for retinal vessel segmentation[J]. Med Image Anal, 2021, 70: 102025. doi: 10.1016/J.MEDIA.2021.102025

    [2]

    梁礼明, 周珑颂, 陈鑫, 等. 鬼影卷积自适应视网膜血管分割算法[J]. 光电工程, 2021, 48(10): 210291. doi: 10.12086/oee.2021.210291

    Liang L M, Zhou L S, Chen X, et al. Ghost convolution adaptive retinal vessel segmentation algorithm[J]. Opto-Electron Eng, 2021, 48(10): 210291. doi: 10.12086/oee.2021.210291

    [3]

    李兰兰, 张孝辉, 牛得草, 等. 深度学习在视网膜血管分割上的研究进展[J]. 计算机科学与探索, 2021, 15(11): 2063−2076. doi: 10.3778/j.issn.1673-9418.2103099

    Li L L, Zhang X H, Niu D C, et al. Research progress of deep learning in retinal vessel segmentation[J]. J Front Comput Sci Technol, 2021, 15(11): 2063−2076. doi: 10.3778/j.issn.1673-9418.2103099

    [4]

    Zhou Y Q, Yu H C, Shi H. Study group learning: improving retinal vessel segmentation trained with noisy labels[C]//Proceedings of the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention, Strasbourg, 2021: 57–67. https://doi.org/10.1007/978-3-030-87193-2_6.

    [5]

    Ummadi V. U-net and its variants for medical image segmentation: a short review[Z]. arXiv: 2204.08470, 2022. https://arxiv.org/abs/2204.08470v1.

    [6]

    Jin Q G, Meng Z P, Pham T D, et al. DUNet: a deformable network for retinal vessel segmentation[J]. Knowl-Based Syst, 2019, 178: 149−162. doi: 10.1016/j.knosys.2019.04.025

    [7]

    Zhang T, Li J, Zhao Y, et al. MC-UNet multi-module concatenation based on u-shape network for retinal blood vessels segmentation[Z]. arXiv: 2204.03213, 2022. https://arxiv.org/abs/2204.03213v1.

    [8]

    Zhu X F, Gan J Z, Lu G Q, et al. Spectral clustering via half-quadratic optimization[J]. World Wide Web, 2020, 23(3): 1969−1988. doi: 10.1007/s11280-019-00731-8

    [9]

    Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[Z]. arXiv: 1609.02907, 2016. https://arxiv.org/abs/1609.02907.

    [10]

    Shin S Y, Lee S, Yun I D, et al. Deep vessel segmentation by learning graphical connectivity[J]. Med Image Anal, 2019, 58: 101556. doi: 10.1016/j.media.2019.101556

    [11]

    Meng Y D, Wei M, Gao D X, et al. CNN-GCN aggregation enabled boundary regression for biomedical image segmentation[C]//Proceedings of the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, Lima, 2020: 352–362. https://doi.org/10.1007/978-3-030-59719-1_35.

    [12]

    Zhu Y H, Ma J B, Yuan C A, et al. Interpretable learning based Dynamic Graph Convolutional Networks for Alzheimer’s Disease analysis[J]. Inf Fusion, 2022, 77: 53−61. doi: 10.1016/j.inffus.2021.07.013

    [13]

    Li X, Yang Y B, Zhao Q J, et al. Spatial pyramid based graph reasoning for semantic segmentation[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 2020: 8950–8959. https://doi.org/10.1109/CVPR42600.2020.00897.

    [14]

    Zhang Y S, Chung A C S. Deep supervision with additional labels for retinal vessel segmentation task[C]//Proceedings of the 21st International Conference on Medical Image Computing and Computer-Assisted Intervention, Granada, 2018: 83–91. https://doi.org/10.1007/978-3-030-00934-2_10.

    [15]

    Zhang Y, Fang J, Chen Y, et al. Edge-aware U-net with gated convolution for retinal vessel segmentation[J]. Biomed Signal Process Control, 2022, 73: 103472. doi: 10.1016/J.BSPC.2021.103472

    [16]

    Yu F, Wang D Q, Shelhamer E, et al. Deep layer aggregation[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 2018: 2403–2412. https://doi.org/10.1109/CVPR.2018.00255.

    [17]

    Jin X, Lai Z H, Jin Z. Learning dynamic relationships for facial expression recognition based on graph convolutional network[J]. IEEE Trans Image Process, 2021, 30: 7143−7155. doi: 10.1109/TIP.2021.3101820

    [18]

    Chen X, Qi D L, Shen J X. Boundary-aware network for fast and high-accuracy portrait segmentation[Z]. arXiv: 1901.03814, 2019. https://arxiv.org/abs/1901.03814.

    [19]

    Yu C Q, Wang J B, Peng C, et al. BiSeNet: bilateral segmentation network for real-time semantic segmentation[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, 2018: 325–341. https://doi.org/10.1007/978-3-030-01261-8_20.

    [20]

    Zhang Y, He M, Chen Z N, et al. Bridge-Net: context-involved U-net with patch-based loss weight mapping for retinal blood vessel segmentation[J]. Expert Syst Appl, 2022, 195: 116526. doi: 10.1016/j.eswa.2022.116526

    [21]

    Li L Z, Verma M, Nakashima Y, et al. IterNet: retinal image segmentation utilizing structural redundancy in vessel networks[C]//Proceedings of 2020 IEEE Winter Conference on Applications of Computer Vision, Snowmass, 2020: 3656–3665. https://doi.org/10.1109/WACV45572.2020.9093621.

    [22]

    Yang L, Wang H X, Zeng Q S, et al. A hybrid deep segmentation network for fundus vessels via deep-learning framework[J]. Neurocomputing, 2021, 448: 168−178. doi: 10.1016/j.neucom.2021.03.085

    [23]

    Yuan Y C, Zhang L, Wang L T, et al. Multi-level attention network for retinal vessel segmentation[J]. IEEE J Biomed Health Inform, 2022, 26(1): 312−323. doi: 10.1109/JBHI.2021.3089201

    [24]

    Li X J, Ding J Q, Tang J J, et al. Res2Unet: a multi-scale channel attention network for retinal vessel segmentation[J]. Neural Comput Appl, 2022, 34(14): 12001−12015. doi: 10.1007/s00521-022-07086-8

  • 加载中

(7)

(4)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2022-06-08
修回日期:  2022-09-26
录用日期:  2022-09-27
网络出版日期:  2022-12-22
刊出日期:  2023-01-25

目录

/

返回文章
返回