三十米中国未来巨型望远镜主桁架结构的概念设计

胡守伟,张勇,王跃飞,等. 三十米中国未来巨型望远镜主桁架结构的概念设计[J]. 光电工程,2022,49(6): 210402. doi: 10.12086/oee.2022.210402
引用本文: 胡守伟,张勇,王跃飞,等. 三十米中国未来巨型望远镜主桁架结构的概念设计[J]. 光电工程,2022,49(6): 210402. doi: 10.12086/oee.2022.210402
Hu S W, Zhang Y, Wang Y F, et al. Concept design for the main structure of 30 m Chinese Future Giant Telescope[J]. Opto-Electron Eng, 2022, 49(6): 210402. doi: 10.12086/oee.2022.210402
Citation: Hu S W, Zhang Y, Wang Y F, et al. Concept design for the main structure of 30 m Chinese Future Giant Telescope[J]. Opto-Electron Eng, 2022, 49(6): 210402. doi: 10.12086/oee.2022.210402

三十米中国未来巨型望远镜主桁架结构的概念设计

  • 基金项目:
    国家自然科学基金天文联合基金重点项目(U2031207);国家自然科学基金天文联合基金培育项目(U1931126)
详细信息
    作者简介:
    *通讯作者: 胡守伟,swhu@niaot.ac.cn
  • 中图分类号: P111.2

Concept design for the main structure of 30 m Chinese Future Giant Telescope

  • Fund Project: Research on Key Technologies of the Edge Sensor for Extremely Large Telescopes Fund (U2031207) and Research on Differential Frequency Modulation Inductive Displacement Sensor Technology for Extremely Large Segmented Mirror Telescope Fund (U1931126)
More Information
  • 随着天文科学日新月异的发展和对性能越来越高的天文望远镜的迫切需求,目前,国际上正在积极建设口径20 m~40 m量级的极大口径光学红外望远镜。这些望远镜为了实现更大口径,也面临着巨大的技术挑战。其中,为使望远镜达到光学设计要求,需要创新解决方案来满足足够的负荷分担要求。本文简单介绍了国际上极大望远镜主桁架结构及关键结构件的多种设计方法,分析了各种方案的优缺点,提出了一种新的轻量化钣金焊接结构的30 m中国未来巨型望远镜方案,并在此基础上进行了大量的有限元建模、优化和仿真分析。分析结果显示,望远镜指向天顶时,第一阶模态频率为2.3 Hz,结构最大变形为3.8 mm;而望远镜指向水平方向时,第一阶模态频率减小为2.1 Hz,结构最大变形为2.9 mm,满足了望远镜的相关技术要求,为我国未来巨型望远镜的研制提供了技术参考。

  • Overview: In order to achieve the desired performance a compact and lightweight isogrid fully integrated into the Altitude Structure is proposed. This structure is adapted to the mirror interfaces of the 30 m Chinese Future Giant Telescope. The aim of the M1 Support Structure is to provide stiff support for the Primary Mirror and, at the same time, contribute to the stiffness of the Altitude Structure, using a lightweight solution so that the unbalance of the altitude structure does not increase in an important way. Besides, the M1 Cell needs to offer an adequate interface to the different mirrors and thus avoid the generation of important local displacements at their support due to the weight of that mirrors. Furthermore, the M1 Cell must allow easy access for maintenance. The isogrid consists of a series of top and bottom plates welded to each other using a series of ribs extending in different directions and using a triangular pattern, resulting in a structure behaving like a lightweight isotropic material. The isogrid will have a constant thickness of 3200 mm to be accessed and will follow the same curved surface as the mirrors. Apart from being a lightweight solution, the fabrication and assembly of such an isogrid are simpler than those of a conventional space frame, which is the traditional solution for M1 Support Structures. Besides, the isogrid allows more open room below the mirrors, so that access from below to the mirrors for maintenance can be achieved easily and even carts up to 1 m height would be able to drive below the mirrors, which is difficult to achieve in the case of a space frame. This can be achieved using a continuous floor on the bottom plate. In order to avoid the fact that the ribs are an obstacle to the continuous floor, we propose using a modular and puzzle-like grating made of galvanized steel that can be mounted easily and the top surface is at the same height as the ribs. A grating based on 40 mm × 4 mm steel members with a spacing of 50 mm ×50 mm is proposed to fulfil the requirements. The different elements of the grating will be planar elements. Due to the low curvature of the surface containing the mirrors, it is expected that carts will be able to travel through it.

  • 加载中
  • 图 1  极大望远镜三维设计图。

    Figure 1.  Rendered images for the extremely large telescopes.

    图 2  TMT主镜桁架支撑结构的设计与优化

    Figure 2.  Design and optimization of trussed supporting structure for the primary mirror of TMT

    图 3  E-ELT主镜钢架桥支撑结构

    Figure 3.  Steel frame bridge supporting structure for the primary mirror of E-ELT

    图 4  GMT主镜钣金焊接支撑结构

    Figure 4.  Sheet metal welding support structure for the primary mirror of GMT

    图 5  30米中国未来巨型望远镜主体桁架结构概念设计图

    Figure 5.  Concept design for the main truss structure of 30 m CFGT

    图 6  30 m CFGT望远镜M1主镜室结构概念设计图

    Figure 6.  Concept design for the primary M1 cell structure of 30 m CFGT telescope

    图 7  指向天顶方向的模态图。

    Figure 7.  Mode shapes for pointing to zenith.

    图 8  指向水平方向的模态图。

    Figure 8.  Mode shapes for pointing to horizon.

    图 9  最初高度轴系液压whiffletree定位方式

    Figure 9.  Original elevation lateral bearings hydraulic whiffletree

    图 10  最新高度轴液压whiffletree控制系统

    Figure 10.  Latest elevation lateral bearings hydraulic whiffletree arrangement

    图 11  在重力载荷方向作用下的静态变形。

    Figure 11.  Gravitational deformation distributions pointing at zenith and horizon.

    图 12  望远镜主镜桁架支撑结构Z向变形和等效应力。

    Figure 12.  Relative deformation along Z-axis and equivalent stress for the trussed supporting structure of the primary mirror M1.

    图 13  在望远镜在温度和稳态风荷载作用下的静态变形。

    Figure 13.  Displacement distribution due to temperature and static wind for configuration.

    表 1  有限元模型中使用的弹簧刚度

    Table 1.  Spring stiffnesses used in finite element model

    弹簧类型弹簧方向刚度/(N/m)
    静压油垫方位轴轴向2.65×1010
    方位径向1.67×109
    高度径向1.25×1010
    高度轴向1.55×109
    直线驱动方位切向1.75×108
    高度切向1.49×108
    下载: 导出CSV

    表 2  CFGT望远镜指向天顶时的模态值

    Table 2.  Eigenfrequencies for the CFGT telescope pointing at zenith

    模态频率/Hz状态
    12.3M1桁架中心扭转
    22.4M2 spider 弯曲
    32.5M2 spider 扭转
    下载: 导出CSV

    表 3  CFGT望远镜指向水平时的模态值

    Table 3.  Eigenfrequencies for the CFGT telescope pointing at horizon

    模态频率/Hz状态
    12.1M2 spider 弯曲
    22.2M1桁架中心扭转
    32.4M2 spider 扭转
    下载: 导出CSV

    表 4  CFGT望远镜与其它极大望远镜主模态频率对比

    Table 4.  Comparison about dominant modal eigenfrequencies for the extremely large telescopes

    描述GMTTMTE-ELT本设计
    主模态频率范围/Hz3~122~51.56~6.02~5
    下载: 导出CSV
  • [1]

    Usuda T, Ezaki Y, Kawaguchi N, et al. Preliminary design study of the TMT telescope structure system: overview[J]. Proc SPIE, 2014, 9145: 91452F.

    [2]

    Ezaki Y, Kato A, Hattori T, et al. Overview of key technologies for TMT telescope structure[J]. Proc SPIE, 2016, 9906: 99060Y. doi: 10.1117/12.2233847

    [3]

    Kamikawa K, Nagai A, Ashida T, et al. High precision machining in TMT (Thirty Meter Telescope) structure manufacturing[J]. Proc SPIE, 2020, 11445: 114451R.

    [4]

    The E-ELT Project Office. The E-ELT Construction Proposal[M]. Garching: European Southern Observatory, 2011.

    [5]

    Chiozzi G, Kiekebusch M, Kornweibel N, et al. The ELT control system[J]. Proc SPIE, 2018, 10707: 107070U.

    [6]

    Argomedo J, Andolfato L, Diaz Cano C, et al. ESO ELT M1 local control system software design and development status (Conference Presentation)[J]. Proc SPIE, 2018, 10707: 107070V.

    [7]

    Nijenhuis J, Heijmans J, den Breeje R, et al. Designing the primary mirror support for the E-ELT[J]. Proc SPIE, 2016, 9906: 990616. doi: 10.1117/12.2232525

    [8]

    Tamai R, Koehler B, Cirasuolo M, et al. The ESO's ELT construction progress[J]. Proc SPIE, 2020, 11445: 114451E.

    [9]

    Fanson J, McCarthy P J, Bernstein R, et al. Overview and status of the Giant Magellan Telescope project[J]. Proc SPIE, 2018, 10700: 1070012.

    [10]

    Angeli G Z, Bernstein R, Walls B, et al. Systems engineering for the Giant Magellan Telescope[J]. Proc SPIE, 2018, 10705: 107050I.

    [11]

    Martin H M, Allen R, Gasho V, et al. Manufacture of primary mirror segments for the Giant Magellan Telescope[J]. Proc SPIE, 2018, 10706: 107060V.

    [12]

    Fischer B M, Ranka T, Aguayo F, et al. The purpose, plan, and progress of the Giant Magellan Telescope primary mirror off-axis segment test cell[J]. Proc SPIE, 2020, 11445: 114451H.

  • 加载中

(14)

(4)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2021-12-17
修回日期:  2022-03-16
刊出日期:  2022-06-25

目录

/

返回文章
返回