大视场阵列探测器归心算法研究

刘好伟,吴志勇,吴佳彬,等. 大视场阵列探测器归心算法研究[J]. 光电工程,2021,48(6): 210039. doi: 10.12086/oee.2021.210039
引用本文: 刘好伟,吴志勇,吴佳彬,等. 大视场阵列探测器归心算法研究[J]. 光电工程,2021,48(6): 210039. doi: 10.12086/oee.2021.210039
Liu H W, Wu Z Y, Wu J B, et al. Research on centering algorithm of array detector with large field of view[J]. Opto-Electron Eng, 2021, 48(6): 210039. doi: 10.12086/oee.2021.210039
Citation: Liu H W, Wu Z Y, Wu J B, et al. Research on centering algorithm of array detector with large field of view[J]. Opto-Electron Eng, 2021, 48(6): 210039. doi: 10.12086/oee.2021.210039

大视场阵列探测器归心算法研究

  • 基金项目:
    国家自然科学基金资助项目(52075520)
详细信息
    作者简介:
    *通讯作者: 吴志勇(1965-),男,研究员,博士生导师,主要从事光电测控总体技术和光通信技术的研究。E-mail:wuzy@ciomp.ac.cn
  • 中图分类号: TB872;TN929.1

Research on centering algorithm of array detector with large field of view

  • Fund Project: National Natural Science Foundation of China (52075520)
More Information
  • 为了实现空间光通信系统小型化、一体化设计,建立了基于阵列探测器和快速偏转镜的一体化跟踪系统,通过分析阵列探测器的光斑位置检测原理提出了一种归心算法。首先通过设置阈值,设计了光斑不完全覆盖探测器的粗归心策略;然后采用数据库查询的方法完成精归心,最后采用无穷积分法使光斑归至原点附近;通过搭建试验平台验证了算法的正确性和可行性。实验结果表明:跟踪视场可达70.3 mrad,较原算法视场扩大了约3倍,跟踪最大误差优于1.8 μrad,为空间光通信系统的进一步工程化应用奠定了基础。

  • Overview: Free space optical communication (FSO) system refers to a communication system that uses laser light wave as an information carrier and free space as an information transmission medium. In recent years, FSO systems are developing towards miniaturization and integration. Acquisition, pointing, and tracking (APT) system is an important part of the FSO system, in order to meet the development of the miniaturization and integration of FSO systems, a photodetector is used in the APT system to replace the original coarse tracking and fine tracking detectors. The coarse tracking system and the fine tracking system are combined into one which simplify the system structure. The array detector has the advantages of high position resolution, small junction capacitance, short response time, and simple processing circuit. It is an ideal photodetector integrating coarse and fine tracking of the APT system. In this paper, the array detector is used as the core component, and the fast steering mirror is used as the auxiliary component to build a laser spot position detection system. In order to improve the field of view and tracking accuracy of spot position detection, by analyzing the principle of spot position detection of the array detector, a homing algorithm for the large field of view array detector is proposed. First, by setting the threshold, a rough centering strategy is designed in which the light spot is not completely on the detector, and the center of the light spot is moved to the 2×2 detection unit in the center of the array detector. Then the database query method is used to complete the fine centering, and the center of the light spot is moved to the detection center within ±0.1 mm. Finally, the infinite integration method is used to calculate the position of the spot centroid, and the spot is moved to the center of the detector. In order to verify the correctness and feasibility of the algorithm, experiments are carried out on the laser spot position detection platform. The experimental results show that the tracking field of view can reach 70.3 mrad, which is about 3 times larger than the original algorithm field of view, and the maximum tracking position error is better than 1.8 μrad, reaching the tracking accuracy index. It has theoretical guiding significance for the miniaturization of FSO system, and lays the foundation for the further engineering application of FSO system.

  • 加载中
  • 图 1  光斑位置检测原理图

    Figure 1.  Schematic diagram of the spot position detection

    图 2  跟踪系统框图

    Figure 2.  Tracking system block diagram

    图 3  归心算法框图

    Figure 3.  Block diagram of the centering algorithm

    图 4  数据库的标定(a)和测量(b)过程

    Figure 4.  Calibration (a) and measurement (b) process of the database

    图 5  阵列探测器视场原理图

    Figure 5.  Schematic diagram of the field of view for array detector

    图 6  原始、粗归心、精归心坐标的对比图

    Figure 6.  Comparisons of the original, coarse, and fine centering coordinates

    图 7  解算值与理论值对比图

    Figure 7.  Comparisons of the calculated value and the theoretical value

    图 8  实验平台实物图

    Figure 8.  Physical picture of the experimental platform

    图 9  粗归心算法实验结果

    Figure 9.  Experimental results of rough centering algorithm

    图 10  精归心后光斑位置折线图

    Figure 10.  Line chart of the spot position after fine centering

    图 11  归原点算法误差折线图

    Figure 11.  Error line chart of the homing algorithm

    图 12  粗跟踪视场实验图

    Figure 12.  Experimental picture of rough tracking field of view

    图 13  精跟踪视场判断图

    Figure 13.  Carefully track the field-of-view judgment map

    表 1  数据库查询表

    Table 1.  Database query table

    边界 1 2 3
    Imin [-0.65, -0.6) [0.5, 0.55) [0.2, 0.25)
    步长/mm 1.3 1.1 0.5
    方向 向左 向右 向右
    下载: 导出CSV
  • [1]

    王天枢, 林鹏, 董芳, 等. 空间激光通信技术发展现状及展望[J]. 中国工程科学, 2020, 22(3): 92-99. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX202003015.htm

    Wang T S, Lin P, Dong F. et al. Progress and prospect of space laser communication technology[J]. Strateg Study CAE, 2020, 22(3): 92-99. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX202003015.htm

    [2]

    郭倩, 宋鹏, 张周强, 等. 基于OFDM的大气激光通信湍流抑制关键技术研究[J]. 光电工程, 2020, 47(3): 190619. doi: 10.12086/oee.2020.190619

    Guo Q, Song P, Zhang Z Q. et al. Research on the key technology of turbulence suppression for atmospheric optical laser communication based on OFDM[J]. Opto-Electron Eng, 2020, 47(3): 190619. doi: 10.12086/oee.2020.190619

    [3]

    佟首峰, 姜会林, 刘云清, 等. 自由空间激光通信系统APT粗跟踪伺服带宽优化设计[J]. 光电工程, 2007, 34(9): 16-20. doi: 10.3969/j.issn.1003-501X.2007.09.004

    Tong S F, Jiang H L, Liu Y Q, et al. Optimum design of bandwidth for the APT coarse tracking assembly in free space laser communication[J]. Opto-Electron Eng, 2007, 34(9): 16-20. doi: 10.3969/j.issn.1003-501X.2007.09.004

    [4]

    龚龙. 卫星激光通用潜望式粗跟踪转台伺服控制系统[D]. 长春: 长春理工大学, 2019.

    Gong W. Swevo conttol system of peripheral coarse tracking turntable for satelite optical communication[D]. Changchun: Changchun University of Science and Technology, 2019.

    [5]

    单风华, 佟首峰, 吕春雷. 自由空间光通信APT系统信标探测技术[J]. 长春理工大学学报(自然科学版), 2013, 36(3-4): 53-55, 59. https://www.cnki.com.cn/Article/CJFDTOTAL-CGJM2013Z2016.htm

    Shan F H, Tong S F, Lv C L. Beacon detection technology of APT system in free space optical communications[J]. J Changchun Univ Sci Technol (Nat Sci Ed), 2013, 36(3-4): 53-55, 59. https://www.cnki.com.cn/Article/CJFDTOTAL-CGJM2013Z2016.htm

    [6]

    陈云善. 四象限探测器的均匀光斑位置分辨率[J]. 光学精密工程, 2015, 23(10): 112-118. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GXJM201507001018.htm

    Chen Y S. Position resolution of quadrant detector for uniform spot[J]. Opt Precis Eng, 2015, 23(10): 112-118. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GXJM201507001018.htm

    [7]

    鲁倩, 任斌, 边晶莹. 四象限探测器的信号光捕获与跟踪技术研究[J]. 光电工程, 2020, 47(3): 190559. doi: 10.12086/oee.2020.190559

    Lu Q, Ren B, Bian J Y. Research on acquisition and tracking technology for the four-quadrant detector[J]. Opto-Electron Eng, 2020, 47(3): 190559. doi: 10.12086/oee.2020.190559

    [8]

    胡亚斌, 王苗. 基于四象限探测器的互瞄技术研究[J]. 光电子·激光, 2015, 26(11): 2193-2199. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201511023.htm

    Hu Y B, Wang M. Study on the mutual alignment technology based on four-quadrant detectors[J]. J Optoelect Laser, 2015, 26(11): 2193-2199. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201511023.htm

    [9]

    吴佳彬. 基于四象限探测器的高精度激光光斑位置检测技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2016.

    Wu J B. The research for technology of high precise laser facula position detection based on the quadrant detector[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2016.

    [10]

    孟范涛. 基于单片面阵CCD实现粗精复合光斑检测技术研究[D]. 长春: 长春理工大学, 2009.

    Meng F T. The research on facula detecting technology base on single area CCD in compound axis system of coarse and fine[D]. Changchun: Changchun University of Science and Technology, 2009.

    [11]

    张敏, 佟首峰, 滕云杰. 空间激光通信单探测器复合跟踪控制技术研究[J]. 激光与红外, 2019, 49(8): 983-986. doi: 10.3969/j.issn.1001-5078.2019.08.013

    Zhang M, Tong S F, Teng Y J. Research on single-sensor and multiple-axis tracking control system for spatial laser communication[J]. Laser Infrared, 2019, 49(8): 983-986. doi: 10.3969/j.issn.1001-5078.2019.08.013

    [12]

    李千, 吴志勇, 高世杰, 等. APD阵列探测器在自由空间光通信上的应用研究[J]. 激光与红外, 2018, 48(1): 10-17. doi: 10.3969/j.issn.1001-5078.2018.01.002

    Li Q, Wu Z Y, Gao S J, et al. Application of APD array detector in free space optical communication[J]. Laser Infrared, 2018, 48(1): 10-17. doi: 10.3969/j.issn.1001-5078.2018.01.002

    [13]

    薛一博. 高精度位移测量系统的硬件研制[D]. 大连: 大连海事大学, 2013.

    Xue Y B. The hardware development of High-precision displacement measurement system[D]. Dalian: Dalian Maritime University, 2013.

    [14]

    李千. 基于阵列探测器的空间激光通信光斑位置检测技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2020.

    Li Q. Research on spot position detection technology of space laser communication based on array detector[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2020.

  • 加载中

(13)

(1)

计量
  • 文章访问数:  3376
  • PDF下载数:  751
  • 施引文献:  0
出版历程
收稿日期:  2021-01-27
修回日期:  2021-04-08
刊出日期:  2021-06-01

目录

/

返回文章
返回