基于喷射效应的太赫兹高分辨成像研究与进展

马晓茗,姜在超,屈庆山,等. 基于喷射效应的太赫兹高分辨成像研究与进展[J]. 光电工程,2020,47(5):190590. doi: 10.12086/oee.2020.190590
引用本文: 马晓茗,姜在超,屈庆山,等. 基于喷射效应的太赫兹高分辨成像研究与进展[J]. 光电工程,2020,47(5):190590. doi: 10.12086/oee.2020.190590
Ma X M, Jiang Z C, Qu Q S, et al. Research advances of high-resolution THz imaging based on terajet effect[J]. Opto-Electron Eng, 2020, 47(5): 190590. doi: 10.12086/oee.2020.190590
Citation: Ma X M, Jiang Z C, Qu Q S, et al. Research advances of high-resolution THz imaging based on terajet effect[J]. Opto-Electron Eng, 2020, 47(5): 190590. doi: 10.12086/oee.2020.190590

基于喷射效应的太赫兹高分辨成像研究与进展

  • 基金项目:
    国家自然科学基金资助项目(11574408);国家重点研发计划(2017YFB00405400);国家民委“中青年英才”培养计划(2016-03-02);中央民族大学大学生创新性实验计划(URTP2019110002)
详细信息
    作者简介:
    *通讯作者: 杨玉平(1976-),女,博士,教授,主要从事太赫兹光谱和成像的研究。E-mail:ypyang@muc.edu.cn
  • 中图分类号: TH742; O439

Research advances of high-resolution THz imaging based on terajet effect

  • Fund Project: Supported by National Natural Science Foundation of China (11574408), the National Key R & D Program of China (2017YFB0405400), the Young-talent Plan of State Affairs Commission (2016-3-02), and the Undergraduate Innovative Test Program funded by Minzu University of China (URTP2019110002)
More Information
  • 太赫兹(THz)成像技术,因其具有能量低、透射率高、波谱范围宽等独特的分析能力,已经在生物医学、安全检查、航空航天等领域展现出巨大的优势及潜在的应用价值,但是较低的空间分辨率制约了太赫兹成像技术的进一步应用。太赫兹波通过具有适当折射率的介质结构产生的“太喷射”效应调控亚波长尺寸太赫兹光场,突破衍射极限对显微系统空间分辨率的限制,同时不损失光场能量和光谱信息,实现高通量、超宽谱的远场太赫兹高分辨成像。本文首先介绍基于纳米喷射的微球透镜显微技术,接着介绍基于太喷射的太赫兹显微技术,最后对基于喷射效应的太赫兹高分辨成像技术的前景做了展望。

  • Overview: In the past decades, great advancements have been made to achieve super-resolution imaging, including near-field THz microscopy, metamaterial superlens, fluorescence microscopy and so on, pushing the resolution to ñm or nm scale. Unfortunately, applications of these methods have been limited in part due to their complication in access and operation, loss of energy and spectral bandwidth, difficulty in information extraction or limited choices of samples. Thus, it is highly desired to develop innovative super-resolution THz imaging modality that is easily accessible and low-cost. Fortunately, at visible frequencies, a unique easy-access super-resolution imaging where dielectric microsphere with appropriate refractive index has been presented and delivered a remarkable 50 nm resolution with white lights in 2010. Furthermore, super-resolution imaging was also presented with a large field-of-view using large polystyrene microspheres (above 30 μm). A strong continuing interest in the technique has led to numerous progress in visible light. In these works, the super-resolution capability of microspheres is determined by the "photonic nanojet" and coupling with evanescent waves. More recently, a straightforward THz imaging method based on terajet effect, analogous to microsphere optical nanoscope, is proposed and developed with spatial resolution beyond the diffraction limit by using either continuous or pulsed THz wave. The terajet beam can break through the restriction of the diffraction limit on the spatial resolution of the microscopic system without losing the energy and spectral bandwidth of the THz field, i.e., a high-resolution, high-throughput and broad-bandwidth THz imaging method. Also, with the extensively longer wavelength of the THz wave, the size of the dielectric spheres is much larger (on the order of millimeters), the spheres are easier to fabricate, simple to manipulate, and capable of handling energy and bandwidth losses. In addition, as unique spectroscopic technique, THz imaging reveals much richer subwavelength structural information, including frequency-dependent amplitude and phase, as well as time-dependent delay and thickness. In this review, firstly, a white-light nanoscopy based on photonic nanojet produced by microspheres is introduced, then the terahertz microscopy based on terajet effect produced by mesoscopic dielectric structures is reviewed. Finally, the prospect of terahertz high resolution imaging technology based on terajet effect is prospected.

  • 加载中
  • 图 1  (a) 微球透镜与传统光学显微镜结合显微镜示意图;(b), (c)电镜图(左)与透射模式下微球超透镜的显微成像图(右)对比:(b)宽度为360 nm、间隔为130 nm的线条;(c)渔网状的镀金AAO模板;(d), (e)电镜图(左)与反射模式下微球超透镜的显微成像图(右)对比:(d)商业蓝光DVD光盘;(e)星状GeSbTe薄膜[27]

    Figure 1.  (a) Experimental configuration of a white-light microsphere nanoscope; microsphere superlens imaging in transmission mode; (b) 360 nm wide lines spaced 130 nm apart; (c) A gold-coated fishnet AAO sample; and microsphere superlens imaging in reflection mode; (d) A commercial Blue-ray DVD disk; (e) A star structure made on GeSbTe thin film[27]

    图 2  (a) 微球纳米喷射示意图[39];(b)单层同质微球和双层异质微球的纳米喷射对比图[40];(c)产生纳米喷射的无衍射贝塞尔光束[41]

    Figure 2.  (a) Schematic diagram of photonic nanojet produced by microsphere[39]; (b) Comparison between single-layer homogeneous microspheres and double-layer heterogeneous microspheres[40]; (c) Microsphere optical nano-jet related to non-diffractive Bessel beams[41]

    图 3  (a) 不同折射率介质长方体产生的太喷射波束示意图[28];(b)反射模式下介质长方体耦合THz成像系统及其对铝板样品的振幅和相位图像[45]

    Figure 3.  (a) Schematic diagram of terajet beam generated by dielectric cuboids with different refractive index[28]; (b) Dielectric cube coupled THz imaging system in reflection mode and its amplitude and phase images for aluminum plate samples[45]

    图 4  (a) 长方体阵列的太喷射波导侧面示意图及其太喷射波束在不同空隙情况下的光场分布[46];(b)耦合金属掩膜的介质立方体的示意图及其太喷射波束的光场分布[48]

    Figure 4.  (a) Schematic diagram of all-dielectric period terajet waveguide using an array of couple cuboids and its electric field distribution[46]; (b) Schematic diagram of the pupil-masked 3D dielectric cuboid and its electric field distribution[48]

    图 5  不同几何形状介质结构产生的喷射波束的光场分布。(a)金属棒阵列填充长方体[49];(b)球体[51];(c)三角椎体[51];(d)梯形椎体[51];(e)扇形椎体[51]

    Figure 5.  Distribution of electric energy generated by different geometric structures. (a) Metal rod array filled rectangular condyle[49], (b) sphere[51], (c) triangular condyle[51], (d) trapezoidal condyle[51], and (e) fan-shaped condyle[51]

    图 6  (a) 锥透镜组系统示意图;(b)基于锥透镜组的太赫兹透射成像;(c)经锥透镜组系统透射的太赫兹波束光场分布[53]

    Figure 6.  (a) Schematic diagram of a lens group setup; (b) Schematic diagram of THz transmission imaging system by using THz sheet; (c) Measured intensities of output beam from lens group system[53]

    图 7  (a) 太喷射效应示意图;(b)成像分辨率;(c)成像效果对比图[29]

    Figure 7.  (a) Schematic diagram of dielectric sphere coupled THz microscopy; (b) Imaging resolution; (c) Contrast image with and without dielectric sphere[29]

    图 8  (a) 有无介质球情况下的THz时域信号;(b)频域信号;(c)相对振幅透过率[54]

    Figure 8.  (a) THz time-domain waveforms with and without dielectric sphere; (b) Frequency-domain signals; (c) Relative amplitude transmittance[54]

    图 9  (a) 3 mm直径介质球在不同频率下x-z平面上的空间能量密度分布;(b) 3 mm直径介质球在1.5 THz频率下x-z平面上的空间能量密度分布随折射率的演变[29]

    Figure 9.  (a) The spatial energy distribution of 3 mm sphere in z-x plane at different frequencies; (b) Evolution of a jet-like energy distribution as the refractive index of 3 mm dielectric sphere increases from 1.4 to 2.0[29]

    图 10  3 mm直径介质半球球在不同频率下x-z平面上的空间能量密度分布。(a) 0.5 THz;(b) 1.0 THz;(c) 1.5 THz;(d) 2.0 THz;(e) 2.5 THz;(f) 3.0 THz[54]

    Figure 10.  The spatial energy distribution of 3 mm sphere in x-z plane at (a) 0.5 THz, (b) 1.0 THz, (c) 1.5 THz, (d) 2.0 THz, (e) 2.5 THz, and (f) 3.0 THz[54]

  • [1]

    Mittleman D M. Twenty years of terahertz imaging [Invited][J]. Optics Express, 2018, 26(8): 9417-9431. doi: 10.1364/OE.26.009417

    [2]

    Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105. doi: 10.1038/nphoton.2007.3

    [3]

    Adam A J L. Review of Near-Field Terahertz measurement methods and their applications[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(8-9): 976-1019. doi: 10.1007/s10762-011-9809-2

    [4]

    Siday T, Natrella M, Wu J, et al. Resonant terahertz probes for near-field scattering microscopy[J]. Optics Express, 2017, 25(22): 27874-27885. doi: 10.1364/OE.25.027874

    [5]

    Zinov'ev N N, Andrianov A V, Gallant A J, et al. Contrast and resolution enhancement in a confocal terahertz video system[J]. JETP Letters, 2008, 88(8): 492-495. doi: 10.1134/S0021364008200058

    [6]

    Llombart N, Cooper K B, Dengler R J, et al. Confocal ellipsoidal reflector system for a mechanically scanned active terahertz imager[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(6): 1834-1841. doi: 10.1109/TAP.2010.2046860

    [7]

    Balbekin N S, Kulya M S, Belashov A V, et al. Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography[J]. Scientific Reports, 2019, 9: 180. doi: 10.1038/s41598-018-36642-3

    [8]

    Liu T, Pi Y M, Yang X. Wide-angle CSAR imaging based on the adaptive subaperture partition method in the terahertz band[J]. IEEE Transactions on Terahertz Science and Technology, 2018, 8(2): 165-173. doi: 10.1109/TTHZ.2017.2781462

    [9]

    Ding S H, Li Q, Yao R, et al. High-resolution terahertz reflective imaging and image restoration[J]. Applied Optics, 2010, 49(36): 6834-6839. doi: 10.1364/AO.49.006834

    [10]

    Hunsche S, Koch M, Brener I, et al. THz near-field imaging[J]. Optics Communications, 1997, 150(1-6): 22-26. http://d.old.wanfangdata.com.cn/Periodical/xxydzgc201401004

    [11]

    Mitrofanov O, Brener I, Wanke M C, et al. Near-field microscope probe for far infrared time domain measurements[J]. Applied Physics Letters, 2000, 77(4): 591-593. doi: 10.1063/1.127054

    [12]

    Chen Q, Zhang X C. Semiconductor dynamic aperture for near-field terahertz wave imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(4): 608-614. doi: 10.1109/2944.974232

    [13]

    Mitrofanov O, Brener I, Harel R, et al. Terahertz near-field microscopy based on a collection mode detector[J]. Applied Physics Letters, 2000, 77(22): 3496-3498. doi: 10.1063/1.1328772

    [14]

    Chen H T, Kersting R, Cho G C. Terahertz imaging with nanometer resolution[J]. Applied Physics Letters, 2003, 83(15): 3009-3011. doi: 10.1063/1.1616668

    [15]

    van der Valk N C J, Planken P C M. Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip[J]. Applied Physics Letters, 2002, 81(9): 1558-1560. doi: 10.1063/1.1503404

    [16]

    Moon K, Park H, Kim J, et al. Subsurface nanoimaging by broadband terahertz pulse near-field microscopy[J]. Nano Letters, 2015, 15(1): 549-552. doi: 10.1021/nl503998v

    [17]

    Klarskov P, Kim H, Colvin V L, et al. Nanoscale laser terahertz emission microscopy[J]. ACS Photonics, 2017, 4(11): 2676-2680. doi: 10.1021/acsphotonics.7b00870

    [18]

    Kiwa T, Tonouchi M, Yamashita M, et al. Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits[J]. Optics Letters, 2003, 28(21): 2058-2060. doi: 10.1364/OL.28.002058

    [19]

    Yamashita M, Kawase K, Otani C, et al. Imaging of large-scale integrated circuits using laser terahertz emission microscopy[J]. Optics Express, 2005, 13(1): 115-120. doi: 10.1364/OPEX.13.000115

    [20]

    Yang Y P, Yan W, Li W. A reflected terahertz-emission microscopy[J]. Chinese Physics Letters, 2007, 24(1): 169-171. doi: 10.1088/0256-307X/24/1/046

    [21]

    杨玉平, 施宇蕾, 严伟, 等.一种新型THz显微探测技术[J], 物理学报, 2005, 54(9): 4079-4083. doi: 10.3321/j.issn:1000-3290.2005.09.021

    Yang Y P, Shi Y L, Yan W, et al. A new microscopy for THz radiation[J]. Acta Physica Sinica, 2005, 54(9): 4079-4083. doi: 10.3321/j.issn:1000-3290.2005.09.021

    [22]

    Zhao J Y, Chu W, Guo L J, et al. Terahertz imaging with sub-wavelength resolution by femtosecond laser filament in air[J]. Scientific Reports, 2015, 4: 3880. doi: 10.1038/srep03880

    [23]

    Ishihara K, Ohashi K, Ikari T, et al. Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture[J]. Applied Physics Letters, 2006, 89(20): 201120. doi: 10.1063/1.2387984

    [24]

    Chen H, Ma S H, Wu X M, et al. Diagnose human colonic tissues by terahertz near-field imaging[J]. Journal of Biomedical Optics, 2015, 20(3): 036017. doi: 10.1117/1.JBO.20.3.036017

    [25]

    Xu Y H, Zhang X Q, Tian Z, et al. Mapping the near-field propagation of surface plasmons on terahertz metasurfaces[J]. Applied Physics Letters, 2015, 107(2): 021105. doi: 10.1063/1.4926967

    [26]

    Chen S C, Du L H, Meng K, et al. Terahertz wave near-field compressive imaging with a spatial resolution of over λ/100[J]. Optics Letters, 2019, 44(1): 21-24. doi: 10.1364/OL.44.000021

    [27]

    Wang Z B, Guo W, Li L, et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope[J]. Nature Communications, 2011, 2: 218. doi: 10.1038/ncomms1211

    [28]

    Pacheco-Peña V, Beruete M, Minin I V, et al. Terajets produced by dielectric cuboids[J]. Applied Physics Letters, 2014, 105(8): 084102. doi: 10.1063/1.4894243

    [29]

    Yang Y P, Liu H L, Yang M H, et al. Dielectric sphere-coupled THz super-resolution imaging[J]. Applied Physics Letters, 2018, 113(3): 031105. doi: 10.1063/1.5026758

    [30]

    Hao X, Kuang C F, Liu X, et al. Microsphere based microscope with optical super-resolution capability[J]. Applied Physics Letters, 2011, 99(20): 203102. doi: 10.1063/1.3662010

    [31]

    Darafsheh A, Walsh G F, Negro L D, et al. Optical super-resolution by high-index liquid-immersed microspheres[J]. Applied Physics Letters, 2012, 101(14): 141128. doi: 10.1063/1.4757600

    [32]

    Lee S, Li L, Ben-Aryeh Y, et al. Overcoming the diffraction limit induced by microsphere optical nanoscopy[J]. Journal of Optics, 2013, 15(12): 125710. doi: 10.1088/2040-8978/15/12/125710

    [33]

    Li L, Guo W, Yan Y Z, et al. Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy[J]. Light: Science & Applications, 2013, 2(9): e104. http://cn.bing.com/academic/profile?id=da2755c7a3a9ac952a47ba2b689ccf87&encoded=0&v=paper_preview&mkt=zh-cn

    [34]

    Yang H, Moullan N, Auwerx J, et al. Fluorescence imaging: super-resolution biological microscopy using virtual imaging by a microsphere nanoscope [J]. Small, 2014, 10(9): 1876. doi: 10.1002/smll.201470055

    [35]

    Wang F, Yang S, Ma H, et al. Microsphere-assisted super-resolution imaging with enlarged numerical aperture by semi-immersion [J]. Applied Physics Letters, 2018, 112:023101. doi: 10.1063/1.5011067

    [36]

    Yan Y Z, Li L, Feng C, et al. Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum[J]. ACS Nano, 2014, 8(2): 1809-1816. doi: 10.1021/nn406201q

    [37]

    Li P Y, Tsao Y, Liu Y J, et al. Unusual imaging properties of superresolution microspheres[J]. Optics Express, 2016, 24(15): 16479-16486. doi: 10.1364/OE.24.016479

    [38]

    Yang H, Trouillon R, Huszka G, et al. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet[J]. Nano Letters, 2016, 16(8): 4862-4870. doi: 10.1021/acs.nanolett.6b01255

    [39]

    Chen Z G, Taflove A, Backman V. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique[J]. Optics Express, 2004, 12(7): 1214-1220. doi: 10.1364/OPEX.12.001214

    [40]

    Shen Y C, Wang L V, Shen J T. Ultralong photonic nanojet formed by a two-layer dielectric microsphere[J]. Optics Letters, 2014, 39(14): 4120-4123. doi: 10.1364/OL.39.004120

    [41]

    Ben-Aryeh Y. Nano-jet related to Bessel beams and to super-resolutions in microsphere optical experiments[J]. EPJ Techniques and Instrumentation, 2017, 4: 3. doi: 10.1140/epjti/s40485-017-0038-5

    [42]

    Pacheco-Peña V, Beruete M, Minin I V, et al. Multifrequency focusing and wide angular scanning of terajets[J]. Optics Letters, 2015, 40(2): 245-248. doi: 10.1364/OL.40.000245

    [43]

    Pham H H N, Hisatake S, Minin I V, et al. Three-dimensional direct observation of Gouy phase shift in a terajet produced by a dielectric cuboid[J]. Applied Physics Letters, 2016, 108(19): 191102. doi: 10.1063/1.4949014

    [44]

    Pham H H N, Hisatake S, Minin O V, et al. Asymmetric phase anomaly of terajet generated from dielectric cube under oblique illumination[J]. Applied Physics Letters, 2017, 110(20): 201105. doi: 10.1063/1.4983640

    [45]

    Pham H H N, Hisatake S, Minin O V, et al. Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube[J]. APL Photonics, 2017, 2(5): 056106. doi: 10.1063/1.4983114

    [46]

    Minin I V, Minin O V, Pacheco-Peña V, et al. All-dielectric periodic terajet waveguide using an array of coupled cuboids[J]. Applied Physics Letters, 2015, 106(25): 254102. doi: 10.1063/1.4923186

    [47]

    Minin I V, Minin O V, Pacheco-Peña V, et al. Localized photonic jets from flat, three-dimensional dielectric cuboids in the reflection mode[J]. Optics Letters, 2015, 40(10): 2329-2332. doi: 10.1364/OL.40.002329

    [48]

    Yue L Y, Yan B, Monks J N, et al. A millimetre-wave cuboid solid immersion lens with intensity-enhanced amplitude mask apodization[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2018, 39(6): 546-552. doi: 10.1007/s10762-018-0479-1

    [49]

    Minin I V, Minin O V. Terajet from 3D anisotropic artificial metamaterial[C]//Proceedings of 2016 13th International Scientific-technical Conference on Actual Problems of Electronics Instrument Engineering, 2016: 142-144.https://ieeexplore.ieee.org/abstract/document/7802237

    [50]

    Minin I V, Minin O V. Terahertz artificial dielectric cuboid lens on substrate for super-resolution images[J]. Optical and Quantum Electronics, 2017, 49(10): 326. doi: 10.1007/s11082-017-1165-6

    [51]

    Cruz A L S, Cordeiro C M B, Franco M A R. Enhanced Terahertz transmission through 3D non-spherical terajets[J]. Proceedings of SPIE, 2015, 9634: 963412. http://cn.bing.com/academic/profile?id=6f7b18c760c729dfb24e53005009076c&encoded=0&v=paper_preview&mkt=zh-cn

    [52]

    Niu L T, Wang K J, Yang Y Q, et al. Diffractive elements for zero-order Bessel beam generation with application in the terahertz reflection imaging[J]. IEEE Photonics Journal, 2019, 11(1): 5900212. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4927a190ee144c8366ebc4548b216813

    [53]

    Zhang Z W, Zhang H Y, Wang K J. Diffraction-free THz sheet and its application on THz imaging system[J]. IEEE Transactions on Terahertz Science and Technology, 2019, 9(5): 471-475. doi: 10.1109/TTHZ.2019.2926630

    [54]

    Yang Z C, Qu Q S, Yang M H, et al. Propagation characteristics of high-throughput terajet beam and its super Resolution THz imaging[C]//Proceedings of 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2019: 1-2.

    [55]

    Qu Q S, Liu H L, Zhu D, et al. Terajet effect of dielectric sphere and THz imaging[J]. Proceedings of SPIE, 2018, 10826: 1082606.

    [56]

    Chernomyrdin N V, Frolov M E, Lebedev S P, et al. Wide-aperture aspherical lens for high-resolution terahertz imaging[J]. Review of Scientific Instruments, 2017, 88(1): 014703. doi: 10.1063/1.4973764

  • 加载中

(10)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2019-09-30
修回日期:  2020-01-06
刊出日期:  2020-05-01

目录

/

返回文章
返回