-
摘要:
太赫兹波具有独特的低能性、高穿透性、惧水性等成像特性,将其应用于相衬成像能够反映物体的内部结构和更加丰富全面的生物信息,在生物医学检测等领域具有重要的应用。其中,太赫兹波数字全息成像是一种可以给出定量的振幅和相位信息的非接触、全场相衬成像方法,是太赫兹成像技术领域的重要研究方向之一。本文基于连续太赫兹源,从离轴式和同轴式数字全息成像的相衬成像原理、光路系统和再现算法多个方面,介绍了相关技术的研究现状,分析了太赫兹源、再现算法等因素对成像分辨率的影响,并对太赫兹数字全息的发展趋势进行了展望。
Abstract:Terahertz (THz) radiation, due to its unique propagation characters of low-energy, high-penetration, water-absorption, provides internal structure of objects and comprehensive biological information in phase contrast imaging. It has been applied in biomedical imaging, non-destructive testing, and other fields. As an important part of THz imaging technology, continuous-wave (CW) THz digital holography (TDH) is qualified as a non-invasive and whole-field phase contrast imaging method. In this paper, we review the development and status of off-axis and in-line TDH, including the recording and reconstruction theory, experimental setup, and reconstruction algorithms. The influence of existing THz sources and the reconstruction algorithms on resolution and fidelity of imaging are analyzed. And the development trend of TDH is prospected in the end.
-
Key words:
- terahertz imaging /
- digital holography /
- resolution /
- phase contrast imaging
-
Overview: Terahertz (THz) radiation is characterized with low-energy, high-penetration, and water-absorption, which could provide internal structure of objects and comprehensive biological information by THz phase contrast imaging. Due to this unique feature, THz radiation has been applied in biomedical imaging, non-destructive testing, and other fields. As an important part of THz imaging technology, continuous-wave THz digital holography (TDH) by recording the complex amplitude in the hologram and numerically retrieving the corresponding phase-shift properties of object, is qualified as a non-invasive and whole-field phase contrast imaging method. With the development of continuous-wave THz sources, detectors, and imaging components, the continuous-wave TDH imaging technology is well developed.
The development and status of off-axis and in-line TDH are reviewed, including the recording and reconstruction theory, experimental setup, and reconstruction algorithms. For the off-axis TDH, the reflective and transmitted TDH has all been introduced. The firstly off-axis TDH configuration is attempted using a 100 GHz Gunn diode oscillator and Schottky-barrier diode. Complete "full-field" phase imaging with higher lateral resolution is achieved using an optically pumped FIR laser and a pyroelectrial array detector, which is then widely applied in continuous-wave TDH configuration later. And the effectiveness of Rayleigh-Sommerfeld convolution algorithm, Fresnel angular spectrum algorithm, and angular spectrum integral are evaluated for off-axis TDH. Miniaturized THz quantum cascade laser with high power and high frequency are also used in TDH full-field imaging system to improve the imaging resolution. For the in-line TDH, the scattered beam by sample interferes with the unscattered part to form the in-line hologram, which is quite suitable for isolated objects imaging. Compared with off-axis TDH, the recording geometry of in-line TDH is more compact, and reconstruction resolution is higher. The twin image is one of the most important problems for in-line TDH, which is solved by iterations with proper constraints in these two planes and phase retrieval algorithm. Constraints on the object plane and extrapolation algorithms for iterative reconstruction of in-line TDH are studied to achieve higher resolution. In addition, different methods are presented to improve the imaging quality of continuous-wave TDH, such as synthetic aperture, denoising method, auto-focusing algorithms, and multi-plane imaging.
In conclusion, the paper summarized the progress of continuous-wave THz digital holography, including the influence of existing THz imaging components and the reconstruction algorithms on resolution and fidelity of imaging are analyzed. And the future development trend of continuous-wave TDH is discussed in the end of the paper.
-
图 4 (a) 基于面阵式热释电探测器的太赫兹波离轴成像系统;(b)间隔为0.4 mm的金属横靶条强度再现结果;(c)间隔为0.4 mm的金属竖靶条强度再现结果[33]
Figure 4. (a) The experimental set-up of the off-axis terahertz digital holography based on pyroelectric array camera; (b) Reconstructed intensity image of horizontal strips of 0.4 mm resolution chart; (c) Reconstructed intensity image of vertical strips of 0.4 mm resolution chart[33]
图 7 基于光泵太赫兹源和微测热辐射计的太赫兹数字全息成像光路[24]
Figure 7. The schematic layout of the terahertz digital holography based on the FIR laser and micro-bolometer
图 11 (a), (d)分辨率为50 μm和40 μm物体的光学显微图像;(b), (c)分辨率为50 μm物体的再现复振幅分布;(e), (f)分辨率为40 μm物体的再现复振幅分布[26]
Figure 11. (a), (d) Optical microscopic images of 50 μm and 40 μm resolution targets; (b), (c) Reconstructed complex amplitude distributions of 50 μm resolution targets; (e), (f) Reconstructed complex amplitude distributions of 40 μm resolution targets[26]
-
[1] Zhang X C, Shkurinov A, Zhang Y. Extreme terahertz science[J]. Nature Photonics, 2017, 11(1): 16-18. doi: 10.1038/nphoton.2016.249
[2] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105. doi: 10.1038/nphoton.2007.3
[3] De Cumis U S, Xu J H, Masini L, et al. Terahertz confocal microscopy with a quantum cascade laser source[J]. Optics Express, 2012, 20(20): 21924-21931. doi: 10.1364/OE.20.021924
[4] Suga M, Sasaki Y, Sasahara T, et al. THz phase-contrast computed tomography based on Mach-Zehnder interferometer using continuous wave source: proof of the concept[J]. Optics Express, 2013, 21(21): 25389-25402. doi: 10.1364/OE.21.025389
[5] Fischer B M, Hoffmann M, Helm H, et al. Terahertz time-domain spectroscopy and imaging of artificial RNA[J]. Optics Express, 2005, 13(14): 5205-5215. doi: 10.1364/OPEX.13.005205
[6] Zhong H, Redo-Sanchez A, Zhang X C. Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system[J]. Optics Express, 2006, 14(20): 9130-9141. doi: 10.1364/OE.14.009130
[7] Bianco V, Memmolo P, Leo M, et al. Strategies for reducing speckle noise in digital holography[J]. Light: Science & Applications, 2018, 7(1): 48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201805005
[8] Nelson J W, Knefelkamp G R, Brolo A G, et al. Digital plasmonic holography[J]. Light: Science & Applications, 2018, 7(1): 52. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0220903689/
[9] Tikan A, Bielawski S, Szwaj C, et al. Single-shot measurement of phase and amplitude by using a heterodyne time-lens system and ultrafast digital time-holography[J]. Nature Photonics, 2018, 12(4): 228-234. doi: 10.1038/s41566-018-0113-8
[10] Schnars U, Falldorf C, Watson J, et al. Digital Holography and Wavefront Sensing[M]. New York: Springer, 2015.
[11] Asundi A. Digital Holography for MEMS and Microsystem Metrology[M]. Chichester/Hoboken: Wiley, 2011.
[12] Minamide H, Ito H. Frequency-agile terahertz-wave generation and detection using a nonlinear optical conversion, and their applications for imaging[J]. Comptes Rendus Physique, 2010, 11(7-8): 457-471. doi: 10.1016/j.crhy.2010.05.005
[13] Faist J, Capasso F, Sivco D L, et al. Quantum cascade laser[J]. Science, 1994, 264(5158): 553-556. doi: 10.1126/science.264.5158.553
[14] Rochat M, Ajili L, Willenberg H, et al. Low-threshold terahertz quantum-cascade lasers[J]. Applied Physics Letters, 2002, 81(8): 1381-1383. doi: 10.1063/1.1498861
[15] Kumar S. Recent progress in terahertz quantum cascade lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 38-47. doi: 10.1109/JSTQE.2010.2049735
[16] Gribnikov Z S, Bashirov R R, Mitin V V. Negative effective mass mechanism of negative differential drift velocity and terahertz generation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(4): 630-640. doi: 10.1109/2944.974235
[17] Maestrini A, Thomas B, Wang H, et al. Schottky diode-based terahertz frequency multipliers and mixers[J]. Comptes Rendus Physique, 2010, 11(7-8): 480-495. doi: 10.1016/j.crhy.2010.05.002
[18] Dobroiu A, Yamashita M, Ohshima Y N, et al. Terahertz imaging system based on a backward-wave oscillator[J]. Applied Optics, 2004, 43(30): 5637-5646. doi: 10.1364/AO.43.005637
[19] Martens S, Gompf B, Dressel M. Characterization of continuous-wave terahertz sources: laser mixing versus backward-wave oscillators[J]. Applied Optics, 2009, 48(29): 5490-5496. doi: 10.1364/AO.48.005490
[20] Baik C W, Son Y M, Kim S I, et al. Microfabricated coupled-cavity backward-wave oscillator for terahertz imaging[C]//Proceedings of 2008 IEEE International Vacuum Electronics Conference, 2008: 398-399.
https://ieeexplore.ieee.org/document/4556367/ [21] Wan M, Muniraj I, Malallah R, et al. Sparsity based terahertz reflective off-axis digital holography[J]. Proceedings of SPIE, 2017, 10233: 102330T. http://cn.bing.com/academic/profile?id=512032773179c55c92b12ca5aacb47dd&encoded=0&v=paper_preview&mkt=zh-cn
[22] Valzania L, Feurer T, Zolliker P, et al. Terahertz ptychography[J]. Optics Letters, 2018, 43(3): 543-546. doi: 10.1364/OL.43.000543
[23] Hack E, Zolliker P. Terahertz holography for imaging amplitude and phase objects[J]. Optics Express, 2014, 22(13): 16079-16086. doi: 10.1364/OE.22.016079
[24] Zolliker P, Hack E. THz holography in reflection using a high resolution microbolometer array[J]. Optics Express, 2015, 23(9): 10957-10967. doi: 10.1364/OE.23.010957
[25] Locatelli M, Ravaro M, Bartalini S, et al. Real-time terahertz digital holography with a quantum cascade laser[J]. Scientific Reports, 2015, 5: 13566. doi: 10.1038/srep13566
[26] Li Z Y, Yan Q, Qin Y, et al. Sparsity-based continuous wave terahertz lens-free on-chip holography with sub-wavelength resolution[J]. Optics Express, 2019, 27(2): 702-713. doi: 10.1364/OE.27.000702
[27] Deng Q H, Li W H, Wang X M, et al. High-resolution terahertz inline digital holography based on quantum cascade laser[J]. Optical Engineering, 2017, 56(11): 113102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=624b0ddb94ce6ec1088c4a9ed7a90ff5
[28] 黄昊翀.连续太赫兹波同轴数字全息成像方法的研究[D].北京: 北京工业大学, 2017.
Huang H C. The research on continuous-wave terahertz in-line digital holographic imaging method[D]. Beijing: Beijing University of Technology, 2017.
[29] Goodman J W. Introduction to Fourier Optics[M]. 3rd ed. Greenwoood Village: Roberts & Company Publishers, 2005.
[30] Mahon R, Murphy A, Lanigan W. Terahertz holographic image reconstruction and analysis[C]//Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004: 749-750.
https://ieeexplore.ieee.org/document/1422309/ [31] Mahon R J, Murphy J A, Lanigan W. Digital holography at millimetre wavelengths[J]. Optics Communications, 2006, 260(2): 469-473. doi: 10.1016/j.optcom.2005.11.024
[32] Heimbeck M S, Kim M K, Gregory D A, et al. Terahertz digital holography using angular spectrum and dual wavelength reconstruction methods[J]. Optics Express, 2011, 19(10): 9192-9200. doi: 10.1364/OE.19.009192
[33] Ding S H, Li Q, Li Y D, et al. Continuous-wave terahertz digital holography by use of a pyroelectric array camera[J]. Optics Letters, 2011, 36(11): 1993-1995. doi: 10.1364/OL.36.001993
[34] Li Q, Li Y D, Ding S H, et al. Terahertz computed tomography using a continuous-wave gas laser[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33(5): 548-558. doi: 10.1007/s10762-012-9897-7
[35] Li Q, Ding S H, Li Y D, et al. Experimental research on resolution improvement in CW THz digital holography[J]. Applied Physics B, 2012, 107: 103-110. doi: 10.1007/s00340-012-4876-1
[36] Yamagiwa M, Ogawa T, Minamikawa T, et al. Real-time amplitude and phase imaging of optically opaque objects by combining full-field off-axis terahertz digital holography with angular spectrum reconstruction[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2018, 39(6): 561-572. doi: 10.1007/s10762-018-0482-6
[37] Cherkassky V S, Knyazev B A, Kubarev V V, et al. Imaging techniques for a high-power THz free electron laser[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 543(1): 102-109. http://cn.bing.com/academic/profile?id=23c1e510941e7e30bb3cc1bf2fa6c742&encoded=0&v=paper_preview&mkt=zh-cn
[38] Tamminen A, Ala-Laurinaho J, Raisanen A V. Indirect holographic imaging at 310 GHz[C]//Proceedings of 2008 European Radar Conference, 2008: 168-171.
[39] Wang X K, Hou L, Zhang Y. Continuous-wave terahertz interferometry with multiwavelength phase unwrapping[J]. Applied Optics, 2010, 49(27): 5095-5102. doi: 10.1364/AO.49.005095
[40] Wang Y X, Zhao Z R, Chen Z Q, et al. Continuous-wave terahertz phase imaging using a far-infrared laser interferometer[J]. Applied Optics, 2011, 50(35): 6452-6460. doi: 10.1364/AO.50.006452
[41] Gao X, Li C, Fang G Y. Study of image reconstruction for terahertz indirect holography with quasi-optics receiver[J]. Journal of the Optical Society of America A, 2013, 30(6): 1291-1296. doi: 10.1364/JOSAA.30.001291
[42] Humphreys M, Grant J P, Escorcia-Carranza I, et al. Video-rate terahertz digital holographic imaging system[J]. Optics Express, 2018, 26(20): 25805-25813. doi: 10.1364/OE.26.025805
[43] Guizar-Sicairos M, Thurman S T, Fienup J R. Efficient subpixel image registration algorithms[J]. Optics Letters, 2008, 33(2): 156-158. doi: 10.1364/OL.33.000156
[44] Wang D Y, Zhao Y L, Rong L, et al. Expanding the field-of-view and profile measurement of covered objects in continuous-wave terahertz reflective digital holography[J]. Optical Engineering, 2019, 58(2): 023111. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6a4d0315072b4320562f1e7157c5e372
[45] 王大勇, 黄昊翀, 周逊, 等.连续太赫兹波同轴数字全息相衬成像[J].中国激光, 2014, 41(8): 232-237. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201408037
Wang D Y, Huang H C, Zhou X, et al. Phase-contrast imaging by the continuous-wave terahertz line digital holography[J]. Chinese Journal of Lasers, 2014, 41(8): 232-237. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201408037
[46] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Optics Letters, 1978, 3(1): 27-29. http://cn.bing.com/academic/profile?id=b68189c3345e2db2bcbdeb2a7349c813&encoded=0&v=paper_preview&mkt=zh-cn
[47] Xue K, Li Q, Li Y D, et al. Continuous-wave terahertz in-line digital holography[J]. Optics Letters, 2012, 37(15): 3228-3230. doi: 10.1364/OL.37.003228
[48] Li Q, Xue K, Li Y D, et al. Experimental research on terahertz Gabor inline digital holography of concealed objects[J]. Applied Optics, 2012, 51(29): 7052-7058. doi: 10.1364/AO.51.007052
[49] Rong L, Latychevskaia T, Wang D Y, et al. Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation[J]. Optics Express, 2014, 22(14): 17236-17245. doi: 10.1364/OE.22.017236
[50] 胡佳琦, 李琦, 杨永发.基于相位恢复法的连续太赫兹同轴数字全息成像仿真研究[J].激光与光电子学进展, 2015, 52(1): 92-98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201501013
Hu J Q, Li Q, Yang Y F. Simulation research on continuous Terahertz inline digital holography imaging based on phase retrieval algorithm[J]. Laser & Optoelectronics Progress, 2015, 52(1): 92-98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201501013
[51] Rong L, Latychevskaia T, Chen C H, et al. Terahertz in-line digital holography of human hepatocellular carcinoma tissue[J]. Scientific Reports, 2015, 5: 8445. doi: 10.1038/srep08445
[52] Hu J Q, Li Q, Cui S S. Research on object-plane constraints and hologram expansion in phase retrieval algorithms for continuous-wave terahertz inline digital holography reconstruction[J]. Applied Optics, 2014, 53(30): 7112-7119. doi: 10.1364/AO.53.007112
[53] Hu J Q, Li Q, Zhou Y. Support-domain constrained phase retrieval algorithms in terahertz in-line digital holography reconstruction of a nonisolated amplitude object[J]. Applied Optics, 2016, 55(2): 379-386. doi: 10.1364/AO.55.000379
[54] Hu J Q, Li Q, Chen G H. Reconstruction of double-exposed terahertz hologram of non-isolated object[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2016, 37(4): 328-339. doi: 10.1007/s10762-015-0238-5
[55] Huang H C, Rong L, Wang D Y, et al. Synthetic aperture in terahertz in-line digital holography for resolution enhancement[J]. Applied Optics, 2016, 55(3): A43-A48. doi: 10.1364/AO.55.000A43
[56] 万敏, 黎维华, 王大勇, 等.连续太赫兹波合成孔径数字全息成像方法[J].太赫兹科学与电子信息学报, 2017, 15(3): 358-363. http://d.old.wanfangdata.com.cn/Periodical/xxydzgc201703004
Wan M, Li W H, Wang D Y, et al. Digital holography of continuous terahertz wave synthetic aperture[J]. Journal of Terahertz Science and Electronic Information Technology, 2017, 15(3): 358-363. http://d.old.wanfangdata.com.cn/Periodical/xxydzgc201703004
[57] Chen G H, Li Q. Markov chain Monte Carlo sampling based terahertz holography image denoising[J]. Applied Optics, 2015, 54(14): 4345-4351. doi: 10.1364/AO.54.004345
[58] 崔珊珊, 李琦.基于小波变换的太赫兹数字全息再现像去噪研究[J].红外与激光工程, 2015, 44(6): 1836-1840. doi: 10.3969/j.issn.1007-2276.2015.06.029
Cui S S, Li Q. De-noising research on terahertz digital holography based on wavelet transform[J]. Infrared and Laser Engineering, 2015, 44(6): 1836-1840. doi: 10.3969/j.issn.1007-2276.2015.06.029
[59] Huang H C, Wang D Y, Rong L, et al. Application of autofocusing methods in continuous-wave terahertz in-line digital holography[J]. Optics Communications, 2015, 346: 93-98. doi: 10.1016/j.optcom.2015.01.077
[60] Huang H C, Wang D Y, Li W H, et al. Continuous-wave terahertz multi-plane in-line digital holography[J]. Optics and Lasers in Engineering, 2017, 94: 76-81. doi: 10.1016/j.optlaseng.2017.03.005
[61] Li Z Y, Li L, Qin Y, et al. Resolution and quality enhancement in terahertz in-line holography by sub-pixel sampling with double-distance reconstruction[J]. Optics Express, 2016, 24(18): 21134-21146. doi: 10.1364/OE.24.021134
[62] Ibrahim D G A. Steep large film thickness measurement with off-axis terahertz digital holography reconstructed by a direct Fourier and Hermite polynomial[J]. Applied Optics, 2018, 57(10): 2533-2538. doi: 10.1364/AO.57.002533
[63] Huang H C, Wang D Y, Rong L, et al. Continuous-wave off-axis and in-line terahertz digital holography with phase unwrapping and phase autofocusing[J]. Optics Communications, 2018, 426: 612-622. doi: 10.1016/j.optcom.2018.06.011
[64] Zhang Y, Zhou W, Wang X, et al. Terahertz digital holography[J]. Strain, 2008, 44(5): 380-385. doi: 10.1111/j.1475-1305.2008.00433.x
[65] Wang X K, Cui Y, Hu D, et al. Terahertz quasi-near-field real-time imaging[J]. Optics Communications, 2009, 282(24): 4683-4687. doi: 10.1016/j.optcom.2009.09.004
[66] Wang X K, Cui Y, Sun W F, et al. Terahertz real-time imaging with balanced electro-optic detection[J]. Optics Communications, 2010, 283(23): 4626-4632. doi: 10.1016/j.optcom.2010.07.010
[67] Wang X K, Cui Y, Sun W F, et al. Terahertz polarization real-time imaging based on balanced electro-optic detection[J]. Journal of the Optical Society of America A, 2010, 27(11): 2387-2393. doi: 10.1364/JOSAA.27.002387
[68] 郭力菡, 王新柯, 张岩.生物组织的太赫兹数字全息成像[J].光学精密工程, 2017, 25(3): 611-615. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201703009
Guo L H, Wand X K, Zhang Y. Terahertz digital holographic imaging of biological tissues[J]. Optics and Precision Engineering, 2017, 25(3): 611-615. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201703009
[69] 郑显华, 王新柯, 孙文峰, 等.太赫兹数字全息术的研发与应用[J].中国激光, 2014, 41(2): 24-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201402003
Zheng X H, Wang X K, Sun W F, et al. Developments and applications of the Terahertz digital holography[J]. Chinese Journal of Lasers, 2014, 41(2): 24-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201402003
[70] 石敬, 王新柯, 郑显华, 等.太赫兹数字全息术的研究进展[J].中国光学, 2017, 10(1): 131-147. http://d.old.wanfangdata.com.cn/Periodical/zggxyyygxwz201701012
Shi J, Wang X K, Zheng X H, et al. Recent advances in terahertz digital holography[J]. Chinese Optics, 2017, 10(1): 131-147. http://d.old.wanfangdata.com.cn/Periodical/zggxyyygxwz201701012
[71] Petrov N V, Kulya M S, Tsypkin A N, et al. Application of terahertz pulse time-domain holography for phase imaging[J]. IEEE Transactions on Terahertz Science and Technology, 2016, 6(3): 464-472. doi: 10.1109/TTHZ.2016.2530938
[72] Balbekin N S, Kulya M S, Petrov N V. Terahertz pulse time-domain holography in dispersive media[J]. Computer Optics, 2017, 41(3): 348-355. doi: 10.18287/2412-6179-2017-41-3-348-355
[73] Kulya M, Petrov N V, Tsypkin A, et al. Hyperspectral data denoising for terahertz pulse time-domain holography[J]. Optics Express, 2019, 27(13): 18456-18476. doi: 10.1364/OE.27.018456