基于主动位移成像的图像超分辨率重建

张文雪,罗一涵,刘雅卿,等. 基于主动位移成像的图像超分辨率重建[J]. 光电工程,2024,51(1): 230290. doi: 10.12086/oee.2024.230290
引用本文: 张文雪,罗一涵,刘雅卿,等. 基于主动位移成像的图像超分辨率重建[J]. 光电工程,2024,51(1): 230290. doi: 10.12086/oee.2024.230290
Zhang W X, Luo Y H, Liu Y Q, et al. Image super-resolution reconstruction based on active displacement imaging[J]. Opto-Electron Eng, 2024, 51(1): 230290. doi: 10.12086/oee.2024.230290
Citation: Zhang W X, Luo Y H, Liu Y Q, et al. Image super-resolution reconstruction based on active displacement imaging[J]. Opto-Electron Eng, 2024, 51(1): 230290. doi: 10.12086/oee.2024.230290

基于主动位移成像的图像超分辨率重建

详细信息
    作者简介:
    *通讯作者: 罗一涵,luo.yihan@foxmail.com
  • 中图分类号: TP391.9

Image super-resolution reconstruction based on active displacement imaging

More Information
  • 超分辨重建算法是一种将低分辨率图像恢复为高分辨率图像的算法,被广泛用于医学、遥感、军事安防以及人脸识别等领域。在黑夜、远场场景下构建数据集比较困难,基于深度学习的超分辨重建算法应用受到阻碍。而微扫描成像技术扫描模式固定,对器件到位精度要求高。针对这两个问题,我们提出一种基于主动位移成像的图像超分辨率重建算法。具体地,在控制相机随机移动的同时记录采样时刻位移,通过解算、映射选图、精确匹配图像序列并获取多帧图像间的亚像素信息,然后对估计图像进行迭代和更新,最后重建获得高分辨率图像。实验结果表明,本算法在PSNR、SSIM和平均梯度三个指标上都优于最近提出的基于POCS的图像超分辨率重建算法MFPOCS,与基于CNN的方法ACNet相比具有竞争力。值得提出的是,本算法无需固定的扫描模式,降低了微扫描技术对器件实时到位精度的要求,同时,本算法可以保证重建初始帧的优良选取,有效规避了POCS算法的固有缺点。

  • Overview: The super-resolution reconstruction algorithm is an algorithm that restores low-resolution images to high-resolution images. It finds wide applications in the fields of medicine, remote sensing, military security, and face recognition. Multiple frames provide more information than a single image. Moreover, multiple frames super-resolution reconstruction yields better result images than single-image super-resolution reconstruction. Micro-scanning is one of the most effective imaging ways of obtaining multiple frames for super-resolution reconstruction. However, the scanning pattern of micro-scanning imaging technology is fixed. Additionally, it requires high precision of the device, including position accuracy and control in time accuracy. Regarding the reconstruction algorithm, traditional interpolate algorithms can only resize images without improving image quality. Reconstruction algorithms based on deep learning perform well in resizing and improving quality. They perform well in many scenarios. However, when they are applied in some specific scenarios that are hard to construct datasets, their performances are reduced. To degrade the precision requirement of the device and achieve good performance without datasets, we propose an image super-resolution reconstruction algorithm based on active displacement imaging. This algorithm is inspired by micro-scanning imaging and POCS (Projection Onto Convex Set). Specifically, we control the camera to move randomly while recording the displacement at the sampling moment. Then, we reconstruct the high-resolution images by solving, mapping, selecting zones, matching multiple frames in sub-pixel precisions (below 0.01 pixel), obtaining the sub-pixel information between multiple frames, and iteratively updating the reconstruction. Finally, we generate super-resolution reconstruction results.

    Our present algorithm removes fixed scanning patterns and doesn’t require constructing new datasets. We compare the reconstruction results of our method, recent POCS (tradition), and SRCNN (deep learning). The experimental results show that our algorithm outperforms the latest multi-featured super-resolution reconstruction algorithms of POCS and SRCNN methods in terms of PSNR, SSIM, and mean gradient. Results indicate that this algorithm reduces the requirement of the micro-scanning technique on the device in place accuracy and can be applied in those scenarios without datasets.

  • 加载中
  • 图 1  图像退化过程示意图

    Figure 1.  The image degradation process

    图 2  上采样实现原理图

    Figure 2.  Schematic diagram of up-sampling based on micro-scanning

    图 3  微扫描的三种方式

    Figure 3.  Three ways of micro-scanning

    图 4  2×2微扫描成像重建原理示意

    Figure 4.  Schematic diagram of reconstruction based on micro-scanning imaging

    图 5  算法流程图

    Figure 5.  Flow chart of our algorithm

    图 6  实验平台搭建示意图

    Figure 6.  Schematic diagram of the experimental setup

    图 7  选图过程示意。左:多帧图像序列,右:完备亚像素信息网格

    Figure 7.  Schematic diagram of selection module. Left: Image sequence; Right: An image grid with complete sub-pixel information

    图 8  四种位移情况。(a)四种可能的位移情况;(b) 四种整像素位移模式

    Figure 8.  Four cases of displacement. (a) Four possible cases of pixel shift; (b) Four modes of integer pixel shift

    图 9  四种位移模式下提取信息

    Figure 9.  Schematic diagrams of information extraction in four integer pixel shift cases

    图 10  单点去噪更新模块示意。(a) 匹配多张图像的同一像素点; (b) 同点的像素值及噪点(红圈)

    Figure 10.  Schematic diagram of denoise module. (a) Schematic of matching same pixel of multiple images; (b) Pixel value and noise points (red circle) of same pixels

    图 11  主动位移成像的实验装置实景搭建

    Figure 11.  Experiment sets of the active displacement imaging method

    图 12  实验采样相机位置图

    Figure 12.  Camera position (red point)

    图 13  验证对比结果。(a) 25点对比结果;(b) 25点对比误差

    Figure 13.  Comparison result between ground truth and calculation. (a) Comparison result at 25 points; (b) Comparison of error at 25 points

    图 14  不同方法对分辨率靶进行x4重建得到的结果。(a) MFPOCS[20];(b) ACNet[6];(c) Ours

    Figure 14.  Super-resolution reconstruct results of different algorithms at scale of 4. (a) MFPOCS[20]; (b) ACNet[6]; (c) Ours

    图 15  不同方法重建不同尺度下的MTF折线图

    Figure 15.  MTF curves of different algorithms at different scales

    图 16  原图及相应的感兴趣区域(红框)。(a) 简单图;(b) 复杂图;(c)熊猫图

    Figure 16.  Original pictures and their ROI (red rectangle). (a) Simple image; (b) Complex image; (c) Panda image

    图 17  基于主动位移插值与传统插值方法对比(4×倍)。(a) Ground truth;(b) Ours;(c) Linear;(d) Bicubic

    Figure 17.  Comparison of the traditional interpolation and our interpolation at 4 times. (a) Ground truth; (b) Ours; (c) Linear; (d) Bicubic

    图 18  对简单图进行不同尺度超分辨率重建得到的结果:MFPOCS[20]方法(黄框);ACNet[6]方法(绿框);本文方法(红框)

    Figure 18.  Super-resolution reconstruction results of simple image at different scales using the algorithms of MFPOCS[20](yellow rectangle), ACNet[6] (green rectangle) and ours (red rectangle)

    图 19  对简单图感兴趣区域的超分辨重建结果:MFPOCS[20]方法(黄框);ACNet[6]方法(绿框);本文方法(红框)

    Figure 19.  Super-resolution reconstruction results of ROI of simple image at different scales using the algorithm of MFPOCS[20] (yellow rectangle), ACNet[6] (green rectangle) and ours (red rectangle)

    图 20  对自制复杂图进行不同尺度超分辨率重建得到的结果:MFPOCS[20]方法(黄框);ACNet[6]方法(绿框);本文方法(红框)

    Figure 20.  Super-resolution results of the complex image using the algorithms of MFPOCS[20] (yellow rectangle), ACNet[6] (green rectangle) and ours (red rectangle)

    图 21  熊猫图重建结果:MFPOCS[20]方法(黄框);ACNet[6]方法(绿框);本文方法(红框)

    Figure 21.  Super-resolution reconstruction results of panda image at different scales using the algorithms of MFPOCS[20](yellow rectangle), ACNet[6](green rectangle) and ours (red rectangle)

    图 22  复杂图感兴趣区域重建结果:MFPOCS[20]方法(黄框);ACNet[6]方法(绿框);本文方法(红框)

    Figure 22.  Super-resolution reconstruction results of the complex image at different scales using the algorithms of MFPOCS[20] (yellow rectangle), ACNet[6] (green rectangle) and ours (red rectangle)

    图 23  熊猫图感兴趣区域重建结果:MFPOCS[20]方法(黄框);ACNet[6]方法(绿框);本文方法(红框)

    Figure 23.  Super-resolution reconstruction results of ROI of panda image at different scales using the algorithms of MFPOCS[20](yellow rectangle), ACNet[6] (green rectangle) and ours (red rectangle)

    表 1  三种算法重建结果的SSIM对比

    Table 1.  SSIM of three algorithms

    ImagesScale2345
    Simple
    image
    POCS[20]0.84930.80930.85680.8330
    ACNet[6]0.98760.97640.96230.9418
    Ours0.99210.96940.99490.9778
    Complex
    image
    MFPOCS[20]0.68380.65390.68800.6714
    ACNet[6]0.94620.89260.80510.7358
    Ours0.95170.91830.95920.9250
    PandaMFPOCS[20]0.62630.61870.57480.5653
    ACNet[6]0.70460.67890.60140.5736
    Ours0.66960.62150.62550.6002
    下载: 导出CSV

    表 2  三种算法重建结果的PSNR对比

    Table 2.  PSNR of three algorithms

    ImagesScale2345
    Simple
    image
    MFPOCS[20]29.439026.423229.486826.4090
    ACNet[6]47.712543.635839.259336.5734
    Ours46.788345.572343.969939.1457
    Complex
    Image
    MFPOCS[20]20.267220.129320.127020.1398
    ACNet[6]29.152127.745324.196121.9834
    Ours27.442429.539628.933226.6562
    PandaMFPOCS[20]24.072522.321520.437619.8857
    ACNet[6]25.761723.516919.504818.3985
    Ours24.003123.191521.975121.7718
    下载: 导出CSV

    表 3  三种算法重建结果的平均梯度对比

    Table 3.  Mean gradient of three algorithms

    ImagesScale2345
    Simple
    image
    MFPOCS[20]314.7994211.4553131.7388105.3359
    ACNet [6]338.4507294.9276201.8644145.9228
    Ours320.5050265.3140215.9100184.1190
    Complex
    Image
    MFPOCS[20]350.7845242.5359162.4356129.1925
    ACNet [6]471.1172395.2651275.1865216.5397
    Ours446.9067383.5727350.1874314.0308
    PandaMFPOCS[20]214.7590147.402691.817577.1331
    ACNet [5]271.9497263.0891191.2695163.3797
    Ours253.5610389.1927497.7272205.6040
    下载: 导出CSV
  • [1]

    Dong C, Loy C C, He K M, et al. Learning a deep convolutional network for image super-resolution[C]//Proceedings of the 13th European Conference on Computer Vision, Zurich, 2014: 184–199. https://doi.org/10.1007/978-3-319-10593-2_13.

    [2]

    Dong C, Loy C C, Tang X O. Accelerating the super-resolution convolutional neural network[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, 2016: 391–407. https://doi.org/10.1007/978-3-319-46475-6_25.

    [3]

    Lai W S, Huang J B, Ahuja N, et al. Fast and accurate image super-resolution with deep laplacian pyramid networks[J]. IEEE Trans Pattern Anal Mach Intell, 2019, 41(11): 2599−2613. doi: 10.1109/TPAMI.2018.2865304

    [4]

    Basak H, Kundu R, Agarwal A, et al. Single image super-resolution using residual channel attention network[C]//2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS), Rupnagar, 2020: 219–224. https://doi.org/10.1109/ICIIS51140.2020.9342688.

    [5]

    Kim J, Lee J K, Lee K M. Accurate image super-resolution using very deep convolutional networks[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 2016: 1646–1654. https://doi.org/10.1109/CVPR.2016.182.

    [6]

    Tian C W, Xu Y, Zuo W M, et al. Asymmetric CNN for image superresolution[J]. IEEE Trans Syst, Man, Cybern:Syst, 2022, 52(6): 3718−3730. doi: 10.1109/TSMC.2021.3069265

    [7]

    Tai Y, Yang J, Liu X M. Image super-resolution via deep recursive residual network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 2017: 2790–2798. https://doi.org/10.1109/CVPR.2017.298.

    [8]

    Ledig C, Theis L, Huszár F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 2017: 105–114. https://doi.org/10.1109/CVPR.2017.19.

    [9]

    Talab M A, Awang S, Najim S A D M. Super-low resolution face recognition using integrated efficient sub-pixel convolutional neural network (ESPCN) and convolutional neural network (CNN)[C]//2019 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), Selangor, 2019: 331–335. https://doi.org/10.1109/I2CACIS.2019.8825083.

    [10]

    Tsai R Y, Huang T S. Multiframe image restoration and registration[J]. Adv Comput Vis Image Process, 1984, 1: 317−339.

    [11]

    Irani M, Peleg S. Motion analysis for image enhancement: resolution, occlusion, and transparency[J]. J Vis Commun Image Represent, 1993, 4(4): 324−335. doi: 10.1006/jvci.1993.1030

    [12]

    Schultz R R, Stevenson R L. Extraction of high-resolution frames from video sequences[J]. IEEE Trans Image Process, 1996, 5(6): 996−1011. doi: 10.1109/83.503915

    [13]

    Patti A J, Altunbasak Y. Artifact reduction for set theoretic super resolution image reconstruction with edge adaptive constraints and higher-order interpolants[J]. IEEE Trans Image Process, 2001, 10(1): 179−186. doi: 10.1109/83.892456

    [14]

    杜玉萍, 刘严严. 基于POCS的微扫描超分辨率图像重建算法研究[J]. 光电技术应用, 2019, 34(6): 25−28,44. doi: 10.3969/j.issn.1673-1255.2019.06.006

    Du Y P, Liu Y Y. Research on micro-scanning super-resolution image reconstruction algorithm based on POCS[J]. Electro-Opt Technol Appl, 2019, 34(6): 25−28,44. doi: 10.3969/j.issn.1673-1255.2019.06.006

    [15]

    Yao D, Liang H G, Campos J, et al. Calculation and restoration of lost spatial information in division-of-focal-plane polarization remote sensing using polarization super-resolution technology[J]. Int J Appl Earth Obs Geoinf, 2023, 116: 103155. doi: 10.1016/j.jag.2022.103155

    [16]

    赵浩光, 曲涵石, 王鑫, 等. 高速微扫描图像超分辨重建[J]. 光学 精密工程, 2021, 29(10): 2456−2464. doi: 10.37188/OPE.20212910.2456

    Zhao H G, Qu H S, Wang X, et al. Super-resolution reconstruction of micro-scanning images[J]. Opt Precis Eng, 2021, 29(10): 2456−2464. doi: 10.37188/OPE.20212910.2456

    [17]

    于快快, 郝克, 刘严严, 等. 红外微扫描超分辨率仿真分析与实验研究[J]. 光电技术应用, 2023, 38(1): 46−51. doi: 10.3969/j.issn.1673-1255.2023.01.008

    Yu K K, Hao K, Liu Y Y, et al. Simulation analysis and experimental study of infrared micro-scanning super-resolution[J]. Electro-Opt Technol Appl, 2023, 38(1): 46−51. doi: 10.3969/j.issn.1673-1255.2023.01.008

    [18]

    Zhang Y, Sun J Y, Qiu R D, et al. Spatial scale effect of a typical polarized remote sensor on detecting ground objects[J]. Sensors, 2021, 21(13): 4418. doi: 10.3390/s21134418

    [19]

    Zhang X F, Huang W, Xu M F, et al. Super-resolution imaging for infrared micro-scanning optical system[J]. Opt Express, 2019, 27(5): 7719−7737. doi: 10.1364/OE.27.007719

    [20]

    白旭, 卜丽静, 赵国忱, 等. 多特征的POCS图像超分辨率重建方法[J]. 测绘科学, 2022, 47(12): 174−183. doi: 10.16251/j.cnki.1009-2307.2022.12.022

    Bai X, Bu L J, Zhao G C, et al. POCS image super-resolution reconstruction method based on multi-feature[J]. Sci Surv Mapp, 2022, 47(12): 174−183. doi: 10.16251/j.cnki.1009-2307.2022.12.022

    [21]

    金伟其, 陈翼男, 王霞, 等. 考虑探测器填充率及微扫描对位偏差的扫描型亚像元热成像算法[J]. 红外与毫米波学报, 2008, 27(4): 308−312. doi: 10.3321/j.issn:1001-9014.2008.04.015

    Jin W Q, Chen Y N, Wang X, et al. Scanning type sub-pixel thermal imaging algorithm taking account of detector filling rate and micro-scanning contraposition bias[J]. J Infrared Millim Waves, 2008, 27(4): 308−312. doi: 10.3321/j.issn:1001-9014.2008.04.015

    [22]

    Sanders J G, Wan W H, Harris V, et al. Compact airborne staring FPA sensor with microscanning[J]. Proc SPIE, 1996, 2743: 158−168. doi: 10.1117/12.241958

    [23]

    邹晶, 耿星杰, 廖可梁, 等. 基于亚像素扫描的超分辨技术在高分辨X射线显微镜中的应用[J]. 光子学报, 2017, 46(12): 1211001. doi: 10.3788/gzxb20174612.1211001

    Zou J, Geng X J, Liao K L, et al. Application of super-resolution technique based on sub-pixel scanning in high-resolution X-ray microscopy[J]. Acta Photonica Sin, 2017, 46(12): 1211001. doi: 10.3788/gzxb20174612.1211001

    [24]

    Sun M J, Edgar M P, Phillips D B, et al. Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning[J]. Opt Express, 2016, 24(10): 10476−10485. doi: 10.1364/OE.24.010476

    [25]

    Gui C, Wang D T, Huang X W, et al. Super-resolution and wide-field-of-view imaging based on large-angle deflection with risley prisms[J]. Sensors, 2023, 23(4): 1793. doi: 10.3390/s23041793

    [26]

    Cui H, Cao J, Hao Q, et al. Improving the quality of panoramic ghost imaging via rotation and scaling invariances[J]. Opt Laser Technol, 2023, 160: 109102. doi: 10.1016/j.optlastec.2022.109102

    [27]

    Chen J, Li Y, Cao L H. Research on region selection super resolution restoration algorithm based on infrared micro-scanning optical imaging model[J]. Sci Rep, 2021, 11(1): 2852. doi: 10.1038/s41598-021-82119-1

    [28]

    Liang K Y, Wang B W, Zuo C. Super-resolution-imaging based on circular coded aperture[J]. Proc SPIE, 2023, 12523: 95−99. doi: 10.1117/12.2664916

    [29]

    Ameer S, Basir O. Objective image quality measure based on Weber-weighted mean absolute error[C]//2008 9th International Conference on Signal Processing, Beijing, 2008: 728–732. https://doi.org/10.1109/ICOSP.2008.4697233.

    [30]

    Cheng D Q, Chen L L, Lv C, et al. Light-guided and cross-fusion U-Net for anti-illumination image super-resolution[J]. IEEE Trans Circuits Syst Video Technol, 2022, 32(12): 8436−8449. doi: 10.1109/TCSVT.2022.3194169

    [31]

    Chen L L, Guo L, Cheng D Q, et al. Structure-preserving and color-restoring up-sampling for single low-light image[J]. IEEE Trans Circuits Syst Video Technol, 2022, 32(4): 1889−1902. doi: 10.1109/TCSVT.2021.3086598

  • 加载中

(24)

(3)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2023-11-27
修回日期:  2024-01-23
录用日期:  2024-02-02
刊出日期:  2024-01-25

目录

/

返回文章
返回