基于投影光刻技术的微透镜阵列加工方法

龚健文,王建,刘俊伯,等. 基于投影光刻技术的微透镜阵列加工方法[J]. 光电工程,2023,50(12): 230281. doi: 10.12086/oee.2023.230281
引用本文: 龚健文,王建,刘俊伯,等. 基于投影光刻技术的微透镜阵列加工方法[J]. 光电工程,2023,50(12): 230281. doi: 10.12086/oee.2023.230281
Gong J W, Wang J, Liu J B, et al. Microlens array machining method based on projection lithography[J]. Opto-Electron Eng, 2023, 50(12): 230281. doi: 10.12086/oee.2023.230281
Citation: Gong J W, Wang J, Liu J B, et al. Microlens array machining method based on projection lithography[J]. Opto-Electron Eng, 2023, 50(12): 230281. doi: 10.12086/oee.2023.230281

基于投影光刻技术的微透镜阵列加工方法

  • 基金项目:
    国家重点研发计划项目(2021YFB3200204);国家自然科学基金项目(61604154,61875201,61975211,62005287);中国科学院青年创新促进会项目(2021380);中国科学院西部之光项目(YA23K056);四川省科技计划项目(2023JDRC0104)
详细信息
    作者简介:
    *通讯作者: 胡松,husong@ioe.ac.cn
  • 中图分类号: TN305.7

Microlens array machining method based on projection lithography

More Information
  • 本文提出了一种基于投影光刻技术的微透镜阵列制备方法,成功制备多种口径、面形及表面粗糙度均良好的微透镜阵列。该方法采用0.2倍投影物镜,降低掩模板制造成本,实现不同口径微透镜阵列制备。采用掩模移动滤波技术,在降低掩模制备复杂性的同时,提高了微透镜阵列面形精度。本文对四种不同口径的微透镜阵列进行制备实验,分别为50 μm、100 μm、300 μm、500 μm,其表面形貌加工精度达到微米级,表面粗糙度达到纳米级。实验结果表明,该方法在微透镜阵列制造中具有很大的潜力,与传统方法相比,能够实现更低的线宽和更高的表面面形精度。

  • Overview: As a typical microoptical component, a microlens array has the advantages of high optical diffraction efficiency, good dispersion performance and a large degree of freedom, and is widely used in many fields such as biomedicine, photonics, communication and sensors. The feature size of microlens arrays has been reduced to the submicron level, increasing manufacturing difficulty with the rapid development of information technology. The traditional lithography technology is mainly used for the fabrication of planar two-dimensional structures, but it can not meet the high precision manufacturing requirements of microlens arrays. Among them, the proximity/contact lithography, as a typical micro and nano machining technology, is limited by resolution, and it is difficult to ensure the requirements of sub-micron machining accuracy and freedom. Therefore, efficient micro and nano machining methods are the key to fabricating high-precision microlens arrays. A method for preparing microlens arrays based on projection lithography was proposed, and Microlens arrays of various calibers and different surface roughness were successfully prepared by the method. The projection lithography technology is an imaging system that increases the reduction magnification between the mask and the substrate, so that the mask and the substrate are separated, and the exposure requirements of the bottom line are achieved while reducing the difficulty and cost of mask preparation. The method employs a 0.2× projection objective lens to reduce the manufacturing cost of masks and realize the preparation of microlens arrays with different calibers. We achieve superior surface figure accuracy while reducing the complexity of mask preparation by employing a projection-based mask-shift filtering technique. Four kinds of microlens arrays with different calibers, 50 μm, 100 μm, 300 μm and 500 μm, were prepared. The machining accuracy of the surface morphology reaches the sub-micron level and the surface roughness reaches the nanometer level. The experimental results show that this method has great potential in the fabrication of microlens arrays, and can achieve lower line width and higher surface profile accuracy than traditional methods.

  • 加载中
  • 图 1  投影式掩模移动方法。 (a) 投影曝光系统工作原理; (b) 移动掩模图形结构; (c) 加工后的三维维纳结构

    Figure 1.  The mask moving method based on projection lithography. (a) Working principle of the projection exposure system; (b) Moving mask graphic structure; (c) 3D Wiener structure after processing

    图 2  投影式掩模移动滤波法原理。(a)等分目标函数; (b)微条形区域轮廓;(c)所有分割区域掩模图形的组合;(d) 投影式掩模移动曝光后的微图形结构

    Figure 2.  Principle of mask moving filtering based on projection lithography. (a) The equally divided objective function; (b) Microstrip area outline function; (c) The divided feature pattern; (d) Micrographic structure after exposure

    图 3  不同条件下掩模移动滤波技术恢复的微图形以及对应的掩模版图形。(a),(d) S>>T; (b), (e) S<<T;(c),(f)​​​​​​​​​​​​​​ ST

    Figure 3.  The micrographics and corresponding mask plate graphics are recovered by using mask moving filtering technology under different conditions when (a), (d) S >> T; (b), (e) S << T; (c), (f) ST.

    图 4  两种加工方法的掩模图形。(a-d)基于接近式光刻掩模移动方法的掩模图形,口径分别为50 μm、100 μm、300 μm、500 μm;(e-h)基于投影光刻掩模移动方法的掩模图形,口径分别为250 μm、500 μm、1500 μm、2500 μm

    Figure 4.  Mask graphics of two processing methods. (a-d) Mask patterns based on proximity lithography mask moving method, with diameters of 50 μm, 100 μm, 300 μm and 500 μm, respectively; (e-h) Mask patterns based on the projection lithography mask movement method, with diameters of 250 μm, 500 μm, 1500 μm, 2500 μm, respectively

    图 5  基于传统方法加工的不同口径微透镜面形测量结果。(a) 500 μm口径;(b) 300 μm口径;(c) 100 μm口径;(d) 50 μm口径

    Figure 5.  Surface shape measurement results of microlenses of different calibers processed by traditional methods. (a) 500 μm aperture; (b) 300 μm aperture; (c) 100 μm aperture; (d) 50 μm aperture

    图 6  基于投影光刻方法加工的不同口径微透镜面形结果。(a) 500 μm口径;(b) 300 μm口径;(c) 100 μm口径;(d) 50 μm口径

    Figure 6.  Surface shape results of microlens with different calibers fabricated by projection lithography. (a) 500 μm aperture; (b) 300 μm aperture; (c) 100 μm aperture; (d) 50 μm aperture

    图 7  传统方法实验结果的三维轮廓仪扫描结果。(a-d)分别为 500 µm、300 µm、100 µm、50 µm口径测量结果

    Figure 7.  3D profilometer scanning results of traditional experimental results. (a-d) are the measurement results of 500 µm, 300 µm, 100 µm and 50 µm, respectively

    图 8  投影光刻方法实验结果的三维轮廓仪扫描结果。(a-d)分别为 500 µm、300 µm、100 µm、50 µm口径测量结果

    Figure 8.  3D profilometer scanning results of experimental results of projection lithography method. (a-d) are the measurement results of 500 µm, 300 µm, 100 µm and 50 µm, respectively

  • [1]

    Dong X C, Du C L, Wang C T, et al. Mask-shift filtering for forming microstructures with irregular profile[J]. Appl Phys Lett, 2006, 89(26): 261105. doi: 10.1063/1.2422881

    [2]

    Dong X C, Du C L, Li S H, et al. Control approach for form accuracy of microlenses with continuous relief[J]. Opt Express, 2005, 13(5): 1353−1360. doi: 10.1364/OPEX.13.001353

    [3]

    Zhang W G, Zhu G D, Zhu X Q, et al. Ultra-precision replication technology for fabricating spiral-structure metamaterial[J]. Front Phys, 2020, 8: 267. doi: 10.3389/fphy.2020.00267

    [4]

    Zhang W G, Xia L P, Gao M Y, et al. Laser beam homogenization with randomly distributed freeform cylindrical microlens[J]. Opt Eng, 2020, 59(6): 065103. doi: 10.1117/1.OE.59.6.065103

    [5]

    Zhang S Y, Zhao L X, He Y. Lithography alignment method based on image rotation matching[J]. J Phys Conf Ser, 2021, 1939: 012039. doi: 10.1088/1742-6596/1939/1/012039

    [6]

    杨清华, 陈大鹏, 叶甜春, 等. 电子束散射角限制投影光刻掩模研制[J]. 光电工程, 2004, 31(4): 13−16. doi: 10.3969/j.issn.1003-501X.2004.04.004

    Yang Q H, Chen D P, Ye T C, et al. Development of mask for scattering with angular limitation projection electron-beam lithography[J]. Opto-Electron Eng, 2004, 31(4): 13−16. doi: 10.3969/j.issn.1003-501X.2004.04.004

    [7]

    王耀辉, 何家玉, 王长涛, 等. 增强型局域表面等离子体共振纳米直写光刻[J]. 光电工程, 2016, 43(1): 71−76. doi: 10.3969/j.issn.1003-501X.2016.01.013

    Wang Y H, He J Y, Wang C T, et al. Method investigation of direct-writing nanolithography based on enhanced local surface Plasmon resonance[J]. Opto-Electron Eng, 2016, 43(1): 71−76. doi: 10.3969/j.issn.1003-501X.2016.01.013

    [8]

    Ekberg M, Nikolajeff F, Larsson M, et al. Proximity-compensated blazed transmission grating manufacture with direct-writing, electron-beam lithography[J]. Appl Opt, 1994, 33(1): 103−107. doi: 10.1364/AO.33.000103

    [9]

    Lee L P, Berger S A, Liepmann D, et al. High aspect ratio polymer microstructures and cantilevers for bioMEMS using low energy ion beam and photolithography[J]. Sens Actuators A Phys, 1998, 71(1-2): 144−149. doi: 10.1016/S0924-4247(98)00177-0

    [10]

    Gonin Y, Munnik F, Benninger F, et al. Creating sub-surface channels in PMMA with ion beam lithography in only one step[J]. Appl Surf Sci, 2003, 217(1-4): 289−293. doi: 10.1016/S0169-4332(03)00534-8

    [11]

    杨顺华, 丁晨良, 朱大钊, 等. 基于飞秒激光的高速双光子刻写技术[J]. 光电工程, 2023, 50(3): 220133. doi: 10.12086/oee.2023.220133

    Yang S H, Ding C L, Zhu D Z, et al. High-speed two-photon lithography based on femtosecond laser[J]. Opto-Electron Eng, 2023, 50(3): 220133. doi: 10.12086/oee.2023.220133

    [12]

    王洪庆, 温积森, 杨臻垚, 等. 高速并行双光子激光直写光刻系统[J]. 中国激光, 2022, 49(22): 2202009. doi: 10.3788/CJL202249.2202009

    Wang H Q, Wen J S, Yang Z Y, et al. High-speed parallel two-photon laser direct writing lithography system[J]. Chin J Lasers, 2022, 49(22): 2202009. doi: 10.3788/CJL202249.2202009

    [13]

    Lee C H, Yoshida H, Miura Y, et al. Local liquid crystal alignment on patterned micrograting structures photofabricated by two photon excitation direct laser writing[J]. Appl Phys Lett, 2008, 93(17): 173509. doi: 10.1063/1.2952765

    [14]

    Liu X Q, Chen Q D, Guan K M, et al. Dry-etching-assisted femtosecond laser machining[J]. Laser Photonics Rev, 2017, 11(3): 1600115. doi: 10.1002/lpor.201600115

    [15]

    Liu X Q, Yu L, Yang S N, et al. Optical nanofabrication of concave microlens arrays[J]. Laser Photonics Rev, 2019, 13(5): 1800272. doi: 10.1002/lpor.201800272

    [16]

    Liu J H, Liu J B, Deng Q Y, et al. Intensity modulation based optical proximity optimization for the maskless lithography[J]. Opt Express, 2020, 28(1): 548−557. doi: 10.1364/OE.381503

    [17]

    Artyukov I, Balakireva L, Bijkerk F, et al. Projection x-ray lithography implemented using point sources[J]. Sov J Quantum Electron, 1992, 22(2): 99−110.

    [18]

    杜婧, 刘俊伯, 全海洋, 等. 光刻投影物镜畸变检测中的位移测量误差分析[J]. 光电工程, 2023, 50(2): 220226. doi: 10.12086/oee.2023.220226

    Du J, Liu J B, Quan H Y, et al. Displacement measurement analysis in distortion detection of lithography projection objective[J]. Opto-Electron Eng, 2023, 50(2): 220226. doi: 10.12086/oee.2023.220226

    [19]

    李兵, 车尧, 徐辉, 等. 光刻技术科学知识图谱和多维主题分析[J]. 激光与光电子学进展, 2023, 60(23): 2300004. doi: 10.3788/LOP231551

    Li B, Che Y, Xu H, et al. Lithography technical science knowledge map and multidimensional theme analysis[J]. Laser Optoelectron Prog, 2023, 60(23): 2300004. doi: 10.3788/LOP231551

    [20]

    Vlad A, Huynen I, Melinte S. Wavelength-scale lens microscopy via thermal reshaping of colloidal particles[J]. Nanotechnology, 2012, 23(28): 285708. doi: 10.1088/0957-4484/23/28/285708

    [21]

    Veldkamp W B. Binary optics: a new approach to optical design and fabrication[J]. Opt News, 1988, 14(12): 29−30. doi: 10.1364/ON.14.12.000029

    [22]

    Chang C Y, Yang S Y, Huang L S, et al. Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold[J]. Infrared Phys Technol, 2006, 48(2): 163−173. doi: 10.1016/j.infrared.2005.10.002

    [23]

    董小春, 杜春雷, 潘丽, 等. 微透镜列阵浮雕深度控制的新方法[J]. 光电工程, 2003, 30(4): 1−3. doi: 10.3969/j.issn.1003-501X.2003.04.001

    Dong X C, Du C L, Pan L, et al. A new method for control relief depth of micro-lens array[J]. Opto-Electron Eng, 2003, 30(4): 1−3. doi: 10.3969/j.issn.1003-501X.2003.04.001

    [24]

    张为国, 董小春, 杜春雷. 微透镜列阵成像光刻调焦方法[J]. 光电工程, 2010, 37(3): 39−43. doi: 10.3969/j.issn.1003-501X.2010.03.008

    Zhang W G, Dong X C, Du C L. Zooming method for microlens array imaging photolithography[J]. Opto-Electron Eng, 2010, 37(3): 39−43. doi: 10.3969/j.issn.1003-501X.2010.03.008

    [25]

    Du C L, Dong X C, Deng Q L, et al. Micro-optical structures formed by a mask moving method[J]. Optoelectron Lett, 2007, 3(2): 95−98. doi: 10.1007/s11801-007-7021-3

    [26]

    Cao A X, Wang J Z, Pang H, et al. Design and fabrication of a multifocal bionic compound eye for imaging[J]. Bioinspir Biomim, 2018, 13(2): 026012. doi: 10.1088/1748-3190/aaa901

    [27]

    Im B, Prasetyo F D, Yudistira H T, et al. Drop-on-demand electrohydrodynamic jet printing of microlens array on flexible substrates[J]. ACS Appl Polym Mater, 2023, 5(3): 2264−2271. doi: 10.1021/acsapm.3c00054

    [28]

    赵瑞, 彭超, 张凯, 等. 介电润湿液体透镜仿生复眼的设计与仿真[J]. 光电工程, 2021, 48(2): 49−56. doi: 10.12086/oee.2021.200120

    Zhao R, Peng C, Zhang K, et al. Design and simulation of bionic compound eye with electrowetting liquid lens[J]. Opto-Electron Eng, 2021, 48(2): 49−56. doi: 10.12086/oee.2021.200120

    [29]

    Shi L F, Du C L, Dong X C, et al. Effective formation method for an aspherical microlens array based on an aperiodic moving mask during exposure[J]. Appl Opt, 2007, 46(34): 8346−8350. doi: 10.1364/AO.46.008346

    [30]

    史立芳, 曹阿秀, 刘艳, 等. 大视场人工复眼结构设计方法与实验[J]. 光电工程, 2013, 40(7): 27−33. doi: 10.3969/j.issn.1003-501X.2013.07.005

    Shi L F, Cao A X, Liu Y, et al. Design and experiments of artificial compound eye with large view field[J]. Opto-Electron Eng, 2013, 40(7): 27−33. doi: 10.3969/j.issn.1003-501X.2013.07.005

  • 加载中

(9)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2023-11-20
修回日期:  2023-12-20
录用日期:  2023-12-20
刊出日期:  2024-01-19

目录

/

返回文章
返回