-
摘要
随着移动通信的高速发展和通讯环境的日益复杂,多波束天线在多目标雷达、卫星通信以及多点无线通信等领域有着广泛的应用需求。轨道角动量是电磁波的基本属性之一,它具有螺旋形波前,可独立于振幅、相位、偏振等基本属性,能为电磁波提供新的复用维度。基于亚波长金属波导阵列对电磁波优异的调控能力,我们设计了一种多波束可旋转的太赫兹(THz)阵列天线,通过调控入射波两正交偏振分量的相位分布,可将其分别转化成强度分布一致、阶数相反的涡旋波束。通过改变两分量的相位差,可实现45°偏振方向上波束的干涉图样发生旋转。此外,该阵列天线还展现出了高增益(31 dBi)和宽带宽(61 GHz)的特性。该工作可为基于多波束阵列天线的方位角测量提供新的思路,对丰富THz频段的阵列天线设计具有重要意义。
Abstract
With the high-speed development of mobile communication and the increasingly complex communication environment, multibeam antennas are widely required in the application fields of multi-target radar, satellite communication, multi-point wireless communication, etc. Orbital angular momentum is one of the fundamental properties of electromagnetic waves. It has a spiral wavefront and is independent of basic properties such as amplitude, phase, and polarization. It can provide a new multiplexing dimension for electromagnetic waves. Based on the excellent electromagnetic control capability of the sub-wavelength metal waveguide array, we designed a multibeam rotatable terahertz (THz) array antenna. By adjusting the phase distribution of two orthogonal polarization components of the incident wave, they can be transformed into two vortex beams with the same intensity distributions and opposite orders. The interferometric patterns in the 45° polarization direction can be rotated by changing the phase difference between the two components. Moreover, the array antenna also shows the performance of high gain (31 dBi) and wide bandwidth (up to 61 GHz). This work can provide a new way for azimuth measurement based on multibeam array antennas and is of great significance to enrich the design of array antennas in the THz band.
-
Key words:
- terahertz wave /
- vortex beam /
- multibeam antenna /
- azimuth measurement
-
Overview
Overview: With the high-speed development of mobile communication and the increasingly complex communication environment, multibeam terahertz (THz) antennas with the characteristics of high frequency, wide bandwidth and narrow beam have great application potential in 6G wireless communication. The vortex beam carrying orbital angular momentum has a broad application prospect in enhancing the channel capacity of the communication system and improving the signal transmission rate. Using the interference of vortex beams to realize multibeam rotation can provide a new way for accomplishing the azimuth measurement of the target.
A metallic waveguide can be used as the control unit for full control of the phase, polarization, and amplitude of THz wave. In contrast to the plasmonic and dielectric metasurfaces, the phase delay of the waveguide unit is dependent and independent on the hole dimensions perpendicular and parallel to the polarization direction, respectively. Furthermore, the amplitude and polarization can be completely controlled by tuning the dimension and the orientation angle of metal holes. Notably, the analytical relationship between the phase delay and hole dimensions can be presented explicitly, which greatly simplifies the design process to select the waveguide array for a desired phase distribution. Due to the extraordinary transmission effect, the sub-wavelength metal rectangular hole can attain a very ultra-high transmittance, which is convenient for the device design and practical application. This control unit not only demonstrates a facile scheme to manipulate EM waves but also draws a promising approach to realize multifunctional devices with simplified design and high durability.
In this paper, a multibeam rotatable THz array antenna based on metallic waveguides is proposed. Thanks to the excellent control properties of the metallic waveguides, the phase delay of the two orthogonal polarization modes can be tuned in the range of 0 ~ 2π by designing the cell structure size. By manipulating the phase distribution, the two orthogonal polarization components can be transformed into vortex beams with the same intensity distributions and opposite orders. The polarization directions of the two components are orthogonal to each other, and thus they cannot interfere directly. However, their 45° polarized components can interfere, and the interferometric pattern can be rotated by changing the phase difference between the two components. Moreover, the array antenna also shows the performance of high gain (31.0 dBi) and wide bandwidth (up to 61 GHz). The proposed multi-beam rotatable THz array antenna can provide a new way for the azimuth measurement of radar antennas and is of great significance in enriching the design of array antennas in the THz band.
-
-
表 1 64个金属矩形孔的尺寸(a, b)
Table 1. Dimensions (a, b) of 64 selected sub-wavelength metallic holes
Value/mm (a, b) (1.8, 1.8) (1.528, 1.614) (1.366, 1.488) (1.264, 1.408) (1.729, 1.382) (1.478, 1.311) (1.346, 1.258) (1.244, 1.217) (1.242, 1.699) (1.632, 1.632) (1.437, 1.502) (1.304, 1.413) (1.224, 1.343) (1.568, 1.318) (1.407, 1.263) (1.285, 1.22) (1.283, 1.709) (1.78, 1.652) (1.514, 1.514) (1.36, 1.42) (1.258, 1.346) (1.717, 1.328) (1.469, 1.269) (1.343, 1.224) (1.328, 1.718) (1.237, 1.55) (1.616, 1.529) (1.428, 1.428) (1.298, 1.35) (1.22, 1.284) (1.557, 1.275) (1.404, 1.228) (1.382, 1.729) (1.275, 1.558) (1.762, 1.544) (1.503, 1.437) (1.355, 1.355) (1.252, 1.288) (1.707, 1.283) (1.461, 1.232) (1.454, 1.742) (1.318, 1.57) (1.232, 1.461) (1.597, 1.445) (1.42, 1.36) (1.292, 1.292) (1.216, 1.244) (1.547, 1.236) (1.543, 1.759) (1.374, 1.583) (1.268, 1.469) (1.744, 1.455) (1.488, 1.366) (1.349, 1.298) (1.247, 1.247) (1.7, 1.242) (1.651, 1.779) (1.445, 1.598) (1.301, 1.476) (1.228, 1.403) (1.582, 1.373) (1.414, 1.305) (1.288, 1.252) (1.214, 1.214) -
参考文献
[1] Chen S Z, Zhao J. The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication[J]. IEEE Commun Mag, 2014, 52(5): 36−43. doi: 10.1109/MCOM.2014.6815891
[2] Chowdhury M Z, Shahjalal M, Ahmed S, et al. 6G wireless communication systems: applications, requirements, technologies, challenges, and research directions[J]. IEEE Open J. Commun. Soc., 2020, 1: 957−975. doi: 10.1109/OJCOMS.2020.3010270
[3] Dahlman E, Mildh G, Parkvall S, et al. 5G wireless access: requirements and realization[J]. IEEE Commun Mag, 2014, 52(12): 42−47. doi: 10.1109/MCOM.2014.6979985
[4] Hong W, Jiang Z H, Yu C, et al. Multibeam antenna technologies for 5G wireless communications[J]. IEEE Trans Antennas Propag, 2017, 65(12): 6231−6249. doi: 10.1109/TAP.2017.2712819
[5] 程院兵, 顾红, 苏卫民. 一种新的双基地MIMO雷达快速多目标定位算法[J]. 电子与信息学报, 2012, 34(2): 312−317. doi: 10.3724/SP.J.1146.2011.00555
Cheng Y B, Gu H, Su W M. A new method for fast multi-target localization in bistatic MIMO radar[J]. J Electron Inf Technol, 2012, 34(2): 312−317. doi: 10.3724/SP.J.1146.2011.00555
[6] 柳超, 王月基. 对海探测雷达多目标跟踪技术综述[J]. 雷达学报, 2021, 10(1): 100−115. doi: 10.12000/JR20081
Liu C, Wang Y J. Review of multi-target tracking technology for marine radar[J]. J. Radars, 2021, 10(1): 100−115. doi: 10.12000/JR20081
[7] Yi W, Zhou T, Ai Y, et al. Suboptimal low complexity joint multi-target detection and localization for non-coherent MIMO radar with widely separated antennas[J]. IEEE Trans Signal Process, 2020, 68: 901−916. doi: 10.1109/TSP.2020.2968282
[8] 周乐柱, 李斗, 郭文嘉. 卫星通信多波束天线综述[J]. 电子学报, 2001, 29(6): 824−828. doi: 10.3321/j.issn:0372-2112.2001.06.028
Zhou L Z, Li D, Guo W J. Review of multiple-beam antennas for satellite communications[J]. Acta Electron Sin, 2001, 29(6): 824−828. doi: 10.3321/j.issn:0372-2112.2001.06.028
[9] Yu L, Wan J X, Zhang K, et al. Spaceborne multibeam phased array antennas for satellite communications[J]. IEEE Aerosp Electron Syst Mag, 2023, 38(3): 28−47. doi: 10.1109/MAES.2022.3231580
[10] Martinez-De-Rioja E, Encinar J A, Florencio R, et al. 3-D bifocal design method for dual-reflectarray configurations with application to multibeam satellite antennas in Ka-band[J]. IEEE Trans Antennas Propag, 2019, 67(1): 450−460. doi: 10.1109/TAP.2018.2877298
[11] Luo Q, Gao S, Li W T, et al. Multibeam dual-circularly polarized reflectarray for connected and autonomous vehicles[J]. IEEE Trans Veh Technol, 2019, 68(4): 3574−3585. doi: 10.1109/TVT.2019.2897218
[12] 王少宏, 许景周, 汪力, 等. THz技术的应用及展望[J]. 物理, 2001, 30(10): 612−615. doi: 10.3321/j.issn:0379-4148.2001.10.005
Wang S H, Xu J Z, Wang L, et al. Applications and prospects of terahertz technology[J]. Physics, 2001, 30(10): 612−615. doi: 10.3321/j.issn:0379-4148.2001.10.005
[13] 陆璇辉, 黄慧琴, 赵承良, 等. 涡旋光束和光学涡旋[J]. 激光与光电子学进展, 2008, 45(1): 50−56. doi: 10.3788/LOP20084501.0050
Lu X H, Huang H Q, Zhao C L, et al. Optical vortex beams and optical vortices[J]. Laser Optoelectron Progress, 2008, 45(1): 50−56. doi: 10.3788/LOP20084501.0050
[14] Xu J C, Guo Y X, Yang P Y, et al. Recent progress on RF orbital angular momentum antennas[J]. J Electromagn Waves Appl, 2020, 34(3): 275−300. doi: 10.1080/09205071.2019.1708814
[15] Wang H, Li Y F, Han Y J, et al. Vortex beam generated by circular-polarized metasurface reflector antenna[J]. J Phys D:Appl Phys, 2019, 52(25): 255306. doi: 10.1088/1361-6463/ab1742
[16] 郭忠义, 龚超凡, 刘洪郡, 等. OAM光通信技术研究进展[J]. 光电工程, 2020, 47(3): 190593. doi: 10.12086/oee.2020.190593
Guo Z Y, Gong C F, Liu H J, et al. Research advances of orbital angular momentum based optical communication technology[J]. Opto-Electron Eng, 2020, 47(3): 190593. doi: 10.12086/oee.2020.190593
[17] Cao T, Lian M, Chen X Y, et al. Multi-cycle reconfigurable THz extraordinary optical transmission using chalcogenide metamaterials[J]. Opto-Electron Sci, 2022, 1(1): 210010. doi: 10.29026/oes.2022.210010
[18] Fan J X, Li Z L, Xue Z Q, et al. Hybrid bound states in the continuum in terahertz metasurfaces[J]. Opto-Electron Sci, 2023, 2(4): 230006. doi: 10.29026/oes.2023.230006
[19] 刘学观, 郭辉萍. 微波技术与天线[M]. 2版. 西安: 西安电子科技大学出版社, 2001.
Liu X G, Guo H P. Microwave Technology and Antennas[M]. 2nd ed. Xi’an: Xidian University Press, 2001.
[20] Liang H W, Li J Q, Wu Z Y, et al. Metallic waveguide arrays for metasurface-like control with high simplicity in design[J]. Adv Opt Mater, 2020, 8(18): 2000605. doi: 10.1002/adom.202000605
[21] Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6668): 667−669. doi: 10.1038/35570
[22] Jiang Z, Lu J H, Fan J Y, et al. Polarization-multiplexing bessel vortex beams for polarization detection of continuous terahertz waves[J]. Laser Photon Rev, 2023, 17(3): 2200484. doi: 10.1002/lpor.202200484
[23] Ordal M A, Bell R J, Alexander R W, et al. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W[J]. Appl Opt, 1985, 24(24): 4493−4499. doi: 10.1364/AO.24.004493
-
访问统计