-
摘要
超表面能够对电磁波的偏振、振幅和相位等物理参量进行前所未有的调控,微纳加工技术的发展进一步推动了超表面在显示、成像、传感、防伪、光场调控等领域的应用前景。然而,大多数超表面缺乏动态调控,限制了其应用范围。近年来超表面的动态调控研究也取得了一些重要进展,本文将主要介绍当前超表面动态调控的主要机制,包括电调控、热调控、光调控、机械调控、化学调控等,综述了国内外学者在超表面动态调控方面的研究进展。此外,本文还对动态超表面在成像、显示、光场调控等领域的应用进行了概述,阐述了其重要意义和应用前景。最后本文总结了当前可调超表面的主要问题及未来发展方向。
Abstract
Metasurfaces can manipulate the physical parameters of electromagnetic waves, including polarization, amplitude, and phase. The development of micro-nanofabrication technology further promotes the application prospects of metasurfaces in fields such as display, imaging, sensing, anti-counterfeiting, and optical modulation. However, most metasurfaces lack dynamic modulation, which restricts their scope of application. In recent years, the research on dynamic metasurfaces has made some progress. This review mainly introduces several mechanisms for dynamic metasurfaces, including electrical, thermal, optical, mechanical, and chemical modulations, and summarizes the research progress in the dynamic metasurfaces. In addition, this review also outlines the applications of dynamic metasurfaces in fields such as imaging, display, and optical modulations, and highlights their significance and prospects. Finally, this review summarizes the main problems and future development directions of currently tunable metasurfaces.
-
Key words:
- metasurface /
- structural color /
- hologram /
- imaging /
- display /
- dynamic modulation
-
Overview
Overview: Researchers have witnessed significant progress for metasurfaces in various domains of flat optics, including displays, holograms, beam steering, structural colors, and other planar optical applications. The progress is also accompanied by a growing trend towards device integration and industrialization. However, most optical metasurfaces lack the function of dynamic modulation, which further limits their potential applications. In recent years, numerous efforts have been made for dynamic control of metasurfaces. This review article primarily focuses on elucidating the working mechanisms for the current dynamic modulation methods, namely electrical, thermal, optical, mechanical, and chemical modulations.
Electrically tunable metasurfaces primarily utilize materials that exhibit electrical response, such as liquid crystals, two-dimensional materials, and electrochromic materials, to change the refractive index and the dimensions of structural units, thereby achieving responsive tuning. By combining metasurfaces with thermally responsive materials such as semiconductors, transparent conductive oxides, and phase-change materials, dynamic thermal tuning of metasurfaces can be realized based on mechanisms such as thermo-optic effects, carrier modulation, and phase change. Optical pumping allows for modulation at picosecond and even femtosecond timescales. Optically tunable metasurfaces can also rely on photothermal effects and the phase change of materials. The photothermal effect induced by high-energy lasers could enable to locally heat the material, leading to a phase change and modulation of the refractive index. This tuning of the refractive index gives rise to the adjusted functionality of the metasurfaces. Mechanical tuning involves dynamically controlling metasurfaces by changing the geometric shape of meta-atoms and/or the spacing between adjacent meta-atoms using mechanical force as an external excitation. This can be achieved through two approaches, namely microelectromechanical systems (MEMS) and flexible substrates. Chemical tuning involves altering the composition of materials constituting meta-atoms and changing the chemical properties of the surrounding medium. These changes in the chemical properties can cause variations in material optical parameters, such as refractive index and polarization, resulting in the tuning of the functionality of the metasurfaces.
Furthermore, this review article provides an overview of the applications of dynamic metasurfaces in imaging, displays, and light field modulation, shedding light on their significance and future prospects. In metalens-based imaging, the adjustable focal length undoubtedly adds more channels to imaging, hence greatly expanding the application range. Due to its compatibility with traditional electrical devices, electrically tunable metasurfaces are considered as one of the most promising pathways to achieve interactive holographic displays. Furthermore, the dynamic display of metasurface-based structural colors holds great potential for super-resolution display applications. Moreover, dynamic beam control plays an important role in various fields such as laser radar, optical communication, laser processing, and 3D printing.
In summary, the development of dynamically tunable metasurface devices aims to achieve fast response speeds, user-friendly tuning mechanisms, easy integration, and multiple functions in one device.
-
-
图 2 几种不同材料的电调谐动态超表面方法。(a)液晶材料集成[48];(b) 电致变色材料集成[57];(c)石墨烯材料集成[50];(d)相变材料作为间隔层集成[61]
Figure 2. Electrically tunable metasurfaces with different active materials. (a) Liquid crystal integration[48]; (b) Electrochromic material integration[57]; (c) Graphene material integration[50]; (d) Integration of phase change material as the sandwich layer[61]
图 3 几种不同材料的热调谐动态超表面方法。(a) 电热可调硅基纳米光子相控阵示意图[63];(b) 基于重掺杂InSb衬底和InSb结构的热可调反射率光谱[66];(c) 基于VO2电热可调超表面的(i)结构示意图及(ii)共振峰位的移动[68];(d) 基于GST材料热可调超表面(i)相变导致的反射谱调制及(ii)器件结构示意图[70];(e) 基于液晶热可调超表面的(i)结构示意图及(ii)不同温度下透过率调制[74]
Figure 3. Thermally tunable metasurfaces with different active materials. (a) Schematic diagram of an electrothermally tunable silicon-based nanophotonic phased array[63]; (b) Thermally tunable reflectance spectrum based on a heavily doped InSb substrate and InSb nanostructures[66]; (c) VO2-based electrothermally tunable metasurface: (i) schematic diagram and (ii) the shift of its resonant peak[68]; (d) GST-based thermally tunable metasurface: (i) the reflection modulation caused by the phase change and (ii) schematic diagram of the device[70]; (e) LC-based thermally tunable metasurface: (i) schematic diagram of the device and (ii) the transmittance modulation at different temperatures[74]
图 4 几种不同材料的光调谐动态超表面方法。 (a) 基于硅和铝SRR结构的光控太赫兹波调制示意图[78];(b) 基于Ⅲ-Ⅴ族半导体的超快光泵浦反射调制示意图[79];(c) 基于CdO:In的光控超快反射率调制器件结构示意图[82];(d) 基于VO2的太赫兹波激发超表面透过率光谱调制及结构示意图[83];(e) 飞秒激光直写可擦除超表面器件结构示意图[84]; (f) 基于偶氮乙基红光可调超表面的偏振调制示意图[87]
Figure 4. Optically tunable metasurfaces with different active materials. (a) Schematic diagram of the optically controlled THz device based on Si and Al SRR structure[78]; (b) Schematic diagram of a III-V semiconductor device with reflection modulated by ultrafast laser pump[79]; (c) Schematic diagram of a CdO:In device with optically controlled fast reflection modulation[82]; (d) The transmittance spectrum modulation of a VO2-based metasuface modulated by the THz wave, and its schematic diagram[83]; (e) Schematic diagram of the erasable metasurface modulated by the femotosecond laser direct writing[84]; (f) Schematic diagram of the polarization modulation of an optically controlled metasurface based on azo ethyl red[87]
图 5 几种不同材料的机械调谐动态超表面方法。(a) 实现动态偏振控制和全息术的可重构超表面的(i)结构示意图、(ii)不同悬臂角度下的模拟振幅、(iii)不同悬臂角度下的辐射相谱[89];(b) 可见光波段双折射超表面系统的(i)器件结构示意图和(ii)不同电压下器件在633 nm波长下对TM波和TE 波的延迟和透射率调制[90];(c) 基于柔性衬底的可重构光学超表面全息(i)器件示意图(ii)未拉伸状态下的光学全息图(ii)拉伸状态下的光学全息图[95]
Figure 5. Mechanically tunable metasurfaces with different active materials. (a) Tunable metasurfaces for achieving dynamic polarization control and holography: (i) structural configuration, (ii) simulated amplitude and (iii) radiation phase spectra at varied cantilever angles[89]; (b) Birefringent reconfigurable metasurfaces in the visible range: (i) device structure and (ii) the modulation of delay and transmittance for TM and TE waves at 633 nm wavelength under different voltages[90]; (c) Optical metasurface holograms based on a flexible substrate: (i) schematic configuration, optical holograms at (ii) unstretched and (iii) stretched states[95]
图 6 几种不同材料的化学调谐动态超表面方法。(a)基于Mg纳米砖的可重构全息超表面的(i)动态调制机理及(ii)加氢脱氢反应后显示的不同全息图像[110];(b)基于液晶的光学全息超表面用于挥发性气体检测(i)左旋和右旋圆偏振光分别入射后的图案及(ii)挥发性气体改变液晶分子取向示意图[115]
Figure 6. Chemically tunable metasurfaces with different active materials. (a) Reconfigurable metasurface holograms based on Mg nanobrick: (i) dynamic modulation principle and (ii) different holographic images after hydrogenation and dehydrogenation reaction[110]; (b) Optical metasurface holograms based on liquid crystals that are used for volatile gas detection: (i) different images are produced when the left and right circularly polarized light is incident on the metasurface hologram and (ii) the schematic diagram showing the change LC molecular orientation upon contacting volatile gas[115]
图 7 几种典型的可调谐动态超构透镜成像应用。(a)集成液晶材料实现超透镜的可调焦距成像[38];(b)微流控液态金属改变材料的金属与介质比例实现可调的焦距成像[117];(c)光控微结构薄膜的形变实现的可调焦距成像[118];(d)相变材料的多晶态与晶态切换实现的可调焦距成像[119];(e)微机电系统控制的双超表面间隙实现的可调焦距三维成像[58];(f) PDMS基底拉伸改变超表面尺寸实现的可调焦距成像[106]
Figure 7. Imaging applications of several typical dynamically tunable metalenses. (a) Electrically tunable molecular orientation of liquid crystals [38]; (b) Microfluidically controlled ratio between metal and dielectric of the material [117]; (c) Optically controlled deformation of thin films with the nanostructures [118]; (d) Temperature controlled phase change of GST [119]; (e) MEMS-controllable gap between two substrates with metasurface nanostructures [58]; (f) Mechanically controlled geometries of nanostructures on the PDMS substrate [106]
图 8 几种典型的可调谐动态显示应用。 (a) 电调控可编程超表面全息原理图[128],每个单元都有一个二极管焊接在两个金属环之间,并由直流电压独立控制; (b) 液晶超表面可切换全息图,不同施加电压下在远场捕获的全息图像[129]; (c) 可拉伸基板上的超表面全息示意图[95],当基板被拉伸时,全息影像会被切换并被放大; (d) 使用二氧化钒超表面的热依赖性动态元全息示意图[135]; (e) 基于聚合物分散液晶的超表面结构色的光学加密技术[139];(f) 动态双功能超表面的工作原理[140]
Figure 8. Dynamically tunable displays. (a) Electrcially reprogrammable metasurface holograms[128]. The metasurface in the middle is formed by an array of meta-atoms, with each having a diode welded between the two metallic loops and independently controlled by a DC voltage; (b) Liquid crystal tunable metasurface holograms and captured images in the far field at different applied voltages[129]; (c) Schematic diagram of a hologram on a stretchable substrate[95]. Holograms are switched and enlarged when the substrate is stretched; (d) Thermally tunable meta-holograms using a vanadium dioxide integrated metasurface[135]; (e) Polymer-dispersed liquid crystal-based metasurfaces for optical encryption[139]; (f) Principle of dynamic bifunctional metasurfaces[140]
图 9 几种典型的可调谐动态光束整形应用。 (a) 栅极可调超表面示意图[141],该结构由石英基板、金背板和覆盖有氧化铝膜和金条状天线的薄ITO膜组成,在条状天线和底部金之间施加电压,导致在靠近氧化铝处的透明氧化物处形成电荷积累; (b) 电可调通道组成的有源超表面阵列示意图[142],每个通道由11个可单独寻址的等离激元纳米谐振器组成,右上方的入射光束从超表面阵列反射,Vt和 Vb分别调节上下闸门控制转向光束的方向;(c) 使用超表面SLM生成的3D深度图像[142]; (d) 液晶控制的光束切换超表面工作原理图[75],左边是各向同性态,右边是向列相态;(e) 使用微机电系统-超表面进行二维波前整形在驱动前、反射、聚焦三种驱动情况下微机电系统-超表面的镜面状光反射示意图[59];(f) 相变超表面光束偏转实验结果,以及相变超表面的SEM图[72]
Figure 9. Dynamically tunable beam shaping. (a) Schematic diagram of a tunable metasurface with adjustable gate electrodes[141]. The structure consists of a quartz substrate, a gold back plane, a thin ITO film covered by a thin alumina film, and a gold stripe nanoantenna array on the top. Appling voltages between the stripe antenna and the bottom gold will result in charge accumulation at the transparent oxide near the aluminum oxide; (b) Illustration of the active metasurface array composed of electrically tunable channels, with each channel composed of 11 individually addressable plasmonic nanoresonators[142]. The incident beam from the right side is reflected by the metasurface array, and the direction of the reflected beam is steered by adjusting the top and bottom gates, Vt and Vb, respectively; (c) 3D depth image produced using the metasurface SLM[142]; (d) Working principle diagram of dynamic beam switching by liquid crystal tunable dielectric metasurfaces[75]; (e) Schematic diagram of mirror-like light reflection of MEMS-metasurfaces under three driving conditions: pre-drive, anomalous reflection, and focusing[59]; (f) Experimental results of beam deflection using the phase-change metasurface and its SEM image[72]
表 1 超表面动态调控机制及其特性总结
Table 1. Summary of tuning mechanisms and characteristics of dynamic metasurfaces
调控机制 材料 物理机制 工作波长或频率 调控范围/响应时间 功能与应用 文献 电调 液晶 偏振调控 400-700 nm NA/毫秒量级 结构色 [48] 电调 石墨烯 费米能级调控 3.41-4.55 GHz NA 可调吸收 [50] 电调 聚吡咯 能带调控 400-700 nm NA/~100 ms 结构色 [57] 热控 Si 热光效应 可见-近红外 30 nm峰位移动/NA 散射调制 [20] 热控 GST 相变(非晶态-晶态折射率调控) 2.9-3.6 μm 25%共振峰位移动,60%反射率变化/NA 热成像 [70] 热控 LC 相变(折射率调控) NIR
~1.64 μm40 nm共振峰位移动,84%透过率调制/NA 透射调制 [74] 光控 Si 载流子调控 0.74 THz 42%透过率变化/NA 电磁诱导透明 [78] 光控 GaAs 载流子调控 NIR
~1000 nm35%反射率调制,30 nm共振峰位移动/恢复时间6 ps 反射调制 [79] 光控 LCE 光机械形变 NIR ~250 nm共振峰位移动/NA 吸收调制 [88] 机械 MEMS 结构尺寸改变 0.5-1.5 THz NA 全息 [89] 机械 MEMS 光栅周期改变 380-780 nm NA 双折射 [90] 机械 PDMS 结构排列改变 380-780 nm NA 全息 [95] 化学 Mg 材料改性 380-780 nm NA 全息 [110] 化学 液晶 偏振调控 450-600 nm NA/1-2s 全息 [115] -
参考文献
[1] Yu N F, Aieta F, Genevet P, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Lett, 2012, 12(12): 6328−6333. doi: 10.1021/nl303445u
[2] Lee G Y, Yoon G, Lee S Y, et al. Complete amplitude and phase control of light using broadband holographic metasurfaces[J]. Nanoscale, 2018, 10(9): 4237−4245. doi: 10.1039/C7NR07154J
[3] Zhang K, Yuan Y Y, Zhang D W, et al. Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region[J]. Opt Express, 2018, 26(2): 1351−1360. doi: 10.1364/OE.26.001351
[4] Maguid E, Yulevich I, Yannai M, et al. Multifunctional interleaved geometric-phase dielectric metasurfaces[J]. Light Sci Appl, 2017, 6(8): e17027. doi: 10.1038/lsa.2017.27
[5] Almeida E, Shalem G, Prior Y. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces[J]. Nat Commun, 2016, 7(1): 10367. doi: 10.1038/ncomms10367
[6] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77−79. doi: 10.1126/science.1058847
[7] Chu H C, Li Q, Liu B B, et al. A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials[J]. Light Sci Appl, 2018, 7: 50. doi: 10.1038/s41377-018-0052-7
[8] Liu Y J, Hao Q Z, Smalley J S T, et al. A frequency-addressed plasmonic switch based on dual-frequency liquid crystals[J]. Appl Phys Lett, 2010, 97(9): 091101. doi: 10.1063/1.3483156
[9] Bomzon Z, Biener G, Kleiner V, et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings[J]. Opt Lett, 2022, 27(13): 1141−1143. doi: 10.1364/OL.27.001141
[10] Sun S L, He Q, Xiao S Y, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nat Mater, 2012, 11(5): 426−431. doi: 10.1038/nmat3292
[11] Sun S L, Yang K Y, Wang C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Lett, 2012, 12(12): 6223−6229. doi: 10.1021/nl3032668
[12] Xie X, Pu M B, Liu K P, et al. High-efficiency and tunable circular-polarization beam splitting with a liquid-filled all-metallic catenary meta-mirror[J]. Adv Mater Technol, 2019, 4(7): 1900334. doi: 10.1002/admt.201900334
[13] Hu M, Chen J Y, Li Z Y, et al. Gold nanostructures: engineering their plasmonic properties for biomedical applications[J]. Chem Soc Rev, 2006, 35(11): 1084−1094. doi: 10.1039/b517615h
[14] Liu Y J, Si G Y, Leong E S P, et al. Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays[J]. Adv Mater, 2012, 24(23): OP131−OP135. doi: 10.1002/adma.201104440
[15] Chen Y G, Kao T S, Ng B, et al. Hybrid phase-change plasmonic crystals for active tuning of lattice resonances[J]. Opt Express, 2013, 21(11): 13691−13698. doi: 10.1364/OE.21.013691
[16] Iyer P P, Butakov N A, Schuller J A. Reconfigurable semiconductor phased-array metasurfaces[J]. ACS Photonics, 2015, 2(8): 1077−1084. doi: 10.1021/acsphotonics.5b00132
[17] Komar A, Fang Z, Bohn J, et al. Electrically tunable all-dielectric optical metasurfaces based on liquid crystals[J]. Appl Phys Lett, 2017, 110(7): 071109. doi: 10.1063/1.4976504
[18] Wu P C, Pala R A, Shirmanesh G K, et al. Dynamic beam steering with all-dielectric electro-optic III-V multiple-quantum-well metasurfaces[J]. Nat Commun, 2019, 10(1): 3654. doi: 10.1038/s41467-019-11598-8
[19] Zou C J, Komar A, Fasold S, et al. Electrically tunable transparent displays for visible light based on dielectric metasurfaces[J]. ACS Photonics, 2019, 6(6): 1533−1540. doi: 10.1021/acsphotonics.9b00301
[20] Yan C, Yang K Y, Martin O J F. Fano-resonance-assisted metasurface for color routing[J]. Light Sci Appl, 2017, 6(7): e17017. doi: 10.1038/lsa.2017.17
[21] Wang C T, Hou H H, Chang P C, et al. Full-color reflectance-tunable filter based on liquid crystal cladded guided-mode resonant grating[J]. Opt Express, 2016, 24(20): 22892−22898. doi: 10.1364/OE.24.022892
[22] Zheng G X, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nat Nanotechnol, 2015, 10(4): 308−312. doi: 10.1038/nnano.2015.2
[23] Berini P. Optical beam steering using tunable metasurfaces[J]. ACS Photonics, 2022, 9(7): 2204−2218. doi: 10.1021/acsphotonics.2c00439
[24] Chen M K, Wu Y F, Feng L, et al. Principles, functions, and applications of optical meta-lens[J]. Adv Opt Mater, 2021, 9(4): 2001414. doi: 10.1002/adom.202001414
[25] Decker M, Kremers C, Minovich A, et al. Electro-optical switching by liquid-crystal controlled metasurfaces[J]. Opt Express, 2013, 21(7): 8879−8885. doi: 10.1364/OE.21.008879
[26] Buchnev O, Podoliak N, Kaczmarek M, et al. Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch[J]. Adv Opt Mater, 2015, 3(5): 674−679. doi: 10.1002/adom.201400494
[27] Wang D C, Zhang L C, Gu Y H, et al. Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface[J]. Sci Rep, 2015, 5(1): 15020. doi: 10.1038/srep15020
[28] Colburn S, Zhan A, Majumdar A. Metasurface optics for full-color computational imaging[J]. Sci Adv, 2018, 4(2): eaar2114. doi: 10.1126/sciadv.aar2114
[29] Kim J, Jeon D, Seong J, et al. Photonic encryption platform via dual-band vectorial metaholograms in the ultraviolet and visible[J]. ACS Nano, 2022, 16(3): 3546−3553. doi: 10.1021/acsnano.1c10100
[30] Nemati A, Wang Q, Hong M H, et al. Tunable and reconfigurable metasurfaces and metadevices[J]. Opto-Electron Adv, 2018, 1(5): 180009. doi: 10.29026/oea.2018.180009
[31] Du K, Barkaoui H, Zhang X D, et al. Optical metasurfaces towards multifunctionality and tunability[J]. Nanophotonics, 2022, 11(9): 1761−1781. doi: 10.1515/nanoph-2021-0684
[32] Chen W T, Yang K Y, Wang C M, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images[J]. Nano Lett, 2014, 14(1): 225−230. doi: 10.1021/nl403811d
[33] Wen D D, Yue F Y, Li G X, et al. Helicity multiplexed broadband metasurface holograms[J]. Nat Commun, 2015, 6(1): 8241. doi: 10.1038/ncomms9241
[34] Li S Q, Wang Z, Dong S H, et al. Helicity-delinked manipulations on surface waves and propagating waves by metasurfaces[J]. Nanophotonics, 2020, 9(10): 3473−3481. doi: 10.1515/nanoph-2020-0200
[35] Chen Y Z, Zheng X Y, Zhang X Y, et al. Efficient meta-couplers squeezing propagating light into on-chip subwavelength devices in a controllable way[J]. Nano Lett, 2023, 23(8): 3326−3333. doi: 10.1021/acs.nanolett.3c00310
[36] Wang Z, Yao Y, Pan W K, et al. Bifunctional manipulation of Terahertz waves with high-efficiency transmissive dielectric metasurfaces[J]. Adv Sci, 2023, 10(4): 2205499. doi: 10.1002/advs.202205499
[37] Ali A, Mitra A, Aïssa B. Metamaterials and metasurfaces: A review from the perspectives of materials, mechanisms and advanced metadevices[J]. Nanomaterials, 2022, 12(6): 1027. doi: 10.3390/nano12061027
[38] Ou X N, Zeng T B, Zhang Y, et al. Tunable polarization-multiplexed achromatic dielectric metalens[J]. Nano Lett, 2022, 22(24): 10049−10056. doi: 10.1021/acs.nanolett.2c03798
[39] Wen Y F, Zhang Q, He Q, et al. Shortening focal length of 100-mm aperture flat lens based on improved Sagnac interferometer and bifacial liquid crystal[J]. Adv Opt Mater, 2023, 11(16): 2300127. doi: 10.1002/adom.202300127
[40] Sabri R, Forouzmand A, Mosallaei H. Genetically optimized dual-wavelength all-dielectric metasurface based on double-layer epsilon-near-zero indium-tin-oxide films[J]. J Appl Phys, 2020, 128(22): 223101. doi: 10.1063/5.0026825
[41] Cai Z Q, Liu Y M. Near-infrared reflection modulation through electrical tuning of hybrid graphene metasurfaces[J]. Adv Opt Mater, 2022, 10(6): 2102135. doi: 10.1002/adom.202102135
[42] Tian J Y, Adamo G, Liu H L, et al. Phase-change perovskite microlaser with tunable polarization vortex[J]. Adv Mater, 2023, 35(1): 2207430. doi: 10.1002/ADMA.202207430
[43] Abdelraouf O A M, Wang Z Y, Liu H L, et al. Recent advances in tunable metasurfaces: materials, design, and applications[J]. ACS Nano, 2022, 16(9): 13339−13369. doi: 10.1021/acsnano.2c04628
[44] Chen H T, Taylor A J, Yu N F. A review of metasurfaces: physics and applications[J]. Rep Prog Phys, 2016, 79(7): 076401. doi: 10.1088/0034-4885/79/7/076401
[45] Sun S L, He Q, Hao J M, et al. Electromagnetic metasurfaces: physics and applications[J]. Adv Opt Photonics, 2019, 11(2): 380−478. doi: 10.1364/AOP.11.000380
[46] Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment[J]. J Phys Chem B, 2003, 107(3): 668−677. doi: 10.1021/jp026731y
[47] Murray W A, Barnes W L. Plasmonic materials[J]. Adv Mater, 2007, 19(22): 3771−3782. doi: 10.1002/adma.200700678
[48] Franklin D, Chen Y, Vazquez-Guardado A, et al. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces[J]. Nat Commun, 2015, 6: 7337. doi: 10.1038/ncomms8337
[49] Li K, Wang J W, Cai W F, et al. Electrically switchable structural colors based on liquid-crystal-overlaid aluminum anisotropic nanoaperture arrays[J]. Opt Express, 2022, 30(18): 31913−31924. doi: 10.1364/OE.461887
[50] Zhang J, Wei X Z, Rukhlenko I D, et al. Electrically tunable metasurface with independent frequency and amplitude modulations[J]. ACS Photonics, 2020, 7(1): 265−271. doi: 10.1021/acsphotonics.9b01532
[51] Wang H T, Hao C L, Lin H, et al. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses[J]. Opto-Electron Adv, 2021, 4(2): 200031. doi: 10.29026/oea.2021.200031
[52] Ju L, Geng B S, Horng J, et al. Graphene plasmonics for tunable terahertz metamaterials[J]. Nat Nanotechnol, 2011, 6(10): 630−634. doi: 10.1038/nnano.2011.146
[53] Fang Z Y, Wang Y M, Schlather A E, et al. Active tunable absorption enhancement with graphene nanodisk arrays[J]. Nano Lett, 2014, 14(1): 299−304. doi: 10.1021/nl404042h
[54] Mou N L, Sun S L, Dong H X, et al. Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces[J]. Opt Express, 2018, 26(9): 11728−11736. doi: 10.1364/OE.26.011728
[55] Nemati A, Wang Q, Ang N S S, et al. Ultra-high extinction-ratio light modulation by electrically tunable metasurface using dual epsilon-near-zero resonances[J]. Opto-Electron Adv, 2021, 4(7): 200088. doi: 10.29026/oea.2021.200088
[56] Zeng C, Lu H, Mao D, et al. Graphene-empowered dynamic metasurfaces and metadevices[J]. Opto-Electron Adv, 2022, 5(4): 200098. doi: 10.29026/oea.2022.200098
[57] Xiong K L, Emilsson G, Maziz A, et al. Plasmonic metasurfaces with conjugated polymers for flexible electronic paper in color[J]. Adv Mater, 2016, 28(45): 9956−9960. doi: 10.1002/adma.201603358
[58] Arbabi E, Arbabi A, Kamali S M, et al. MEMS-tunable dielectric metasurface lens[J]. Nat Commun, 2018, 9(1): 812. doi: 10.1038/s41467-018-03155-6
[59] Meng C, Thrane P C V, Ding F, et al. Dynamic piezoelectric mems-based optical metasurfaces[J]. Sci Adv, 2021, 7(26): eabg5639. doi: 10.1126/SCIADV.ABG5639
[60] Camurlu P. Polypyrrole derivatives for electrochromic applications[J]. RSC Adv, 2014, 4(99): 55832−55845. doi: 10.1039/C4RA11827H
[61] Abdollahramezani S, Hemmatyar O, Taghinejad M, et al. Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency[J]. Nat Commun, 2022, 13(1): 1696. doi: 10.1038/s41467-022-29374-6
[62] Rahmani M, Xu L, Miroshnichenko A E, et al. Reversible thermal tuning of all-dielectric metasurfaces[J]. Adv Funct Mater, 2017, 27(31): 1700580. doi: 10.1002/adfm.201700580.
[63] Sun J, Timurdogan E, Yaacobi A, Hosseini E S, et al. Large-scale nanophotonic phased array[J]. Nature, 2013, 493(7431): 195−199. doi: 10.1038/nature11727
[64] Ding L, Luo X S, Cheng L, et al. Electrically and thermally tunable smooth silicon metasurfaces for broadband terahertz antireflection[J]. Adv Opt Mater, 2018, 6(23): 1800928. doi: 10.1002/adom.201800928
[65] Kamali K Z, Xu L, Gagrani N, et al. Electrically programmable solid-state metasurfaces via flash localised heating[J]. Light Sci Appl, 2023, 12(1): 40. doi: 10.1038/s41377-023-01078-6
[66] Iyer P P, Pendharkar M, Palmstrøm C J, et al. Ultrawide thermal free-carrier tuning of dielectric antennas coupled to epsilon-near-zero substrates[J]. Nat Commun, 2017, 8(1): 472. doi: 10.1038/s41467-017-00615-3
[67] Driscoll T, Palit S, Qazilbash M M, et al. Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide[J]. Appl Phys Lett, 2008, 93(2): 024101. doi: 10.1063/1.2956675
[68] Driscoll T, Kim H T, Chae B G, et al. Memory metamaterials[J]. Science, 2009, 325(5947): 1518−1521. doi: 10.1126/science.1176580
[69] Liu L, Kang L, Mayer T S, Werner D H. Hybrid metamaterials for electrically triggered multifunctional control[J]. Nat Commun, 2016, 7: 13236. doi: 10.1038/ncomms13236
[70] Tittl A, Michel A K U, Schäferling M, et al. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability[J]. Adv Mater, 2015, 27(31): 4597−4603. doi: 10.1002/adma.201502023
[71] Mou N L, Liu X L, Wei T, et al. Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material[J]. Nanoscale, 2020, 12(9): 5374−5379. doi: 10.1039/C9NR07602F
[72] Yin X H, Steinle T, Huang L L, et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces[J]. Light Sci Appl, 2017, 6(7): e17016. doi: 10.1038/lsa.2017.16
[73] Zhang F, Xie X, Pu M B, et al. Multistate switching of photonic angular momentum coupling in phase-change metadevices[J]. Adv Mater, 2020, 32(39): 1908194. doi: 10.1002/adma.201908194
[74] Sautter J, Staude I, Decker M, et al. Active tuning of all-dielectric metasurfaces[J]. ACS Nano, 2015, 9(4): 4308−4315. doi: 10.1021/acsnano.5b00723
[75] Komar A, Paniagua-Domínguez R, Miroshnichenko A, et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces[J]. ACS Photonics, 2018, 5(5): 1742−1748. doi: 10.1021/acsphotonics.7b01343
[76] Kim I, Ansari M A, Mehmood M Q, et al. Stimuli-responsive dynamic metaholographic displays with designer liquid crystal modulators[J]. Adv Mater, 2020, 32(50): 2004664. doi: 10.1002/adma.202004664
[77] Padilla W J, Taylor A J, Highstrete C, et al. Dynamical electric and magnetic metamaterial response at terahertz frequencies[J]. Phys Rev Lett, 2006, 96(10): 107401. doi: 10.1103/PhysRevLett.96.107401
[78] Gu J Q, Singh R, Liu X J, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nat Commun, 2012, 3: 1151. doi: 10.1038/ncomms2153
[79] Shcherbakov M R, Liu S, Zubyuk V V, et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces[J]. Nat Commun, 2017, 8(1): 17. doi: 10.1038/s41467-017-00019-3
[80] Cong L Q, Srivastava Y K, Zhang H F, et al. All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting[J]. Light Sci Appl, 2018, 7: 28. doi: 10.1038/s41377-018-0024-y
[81] Guo P J, Schaller R D, Ketterson J B, et al. Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude[J]. Nat Photonics, 2016, 10(4): 267−273. doi: 10.1038/nphoton.2016.14
[82] Yang Y M, Kelley K, Sachet E, et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber[J]. Nat Photonics, 2017, 11(6): 390−395. doi: 10.1038/nphoton.2017.64
[83] Liu M K, Hwang H Y, Tao H, et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial[J]. Nature, 2012, 487(7407): 345−348. doi: 10.1038/nature11231
[84] Wang Q, Rogers E T F, Gholipour B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nat Photonics, 2016, 10(1): 60−65. doi: 10.1038/nphoton.2015.247
[85] Li P N, Yang X S, Maß T W W, et al. Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material[J]. Nat Mater, 2016, 15(8): 870−875. doi: 10.1038/nmat4649
[86] Sharma M, Ellenbogen T. An all-optically controlled liquid-crystal plasmonic metasurface platform[J]. Laser Photonics Rev, 2020, 14(11): 2000253. doi: 10.1002/lpor.202000253
[87] Ren M X, Wu W, Cai W, et al. Reconfigurable metasurfaces that enable light polarization control by light[J]. Light Sci Appl, 2017, 6(6): e16254. doi: 10.1038/lsa.2016.254
[88] Liu J X, Zeng H, Cheng M, et al. Photoelastic plasmonic metasurfaces with ultra-large near infrared spectral tuning[J]. Mater Horiz, 2022, 9(3): 942−951. doi: 10.1039/D1MH01377G
[89] Cong L Q, Pitchappa P, Wu Y, et al. Active multifunctional microelectromechanical system metadevices: Applications in polarization control, wavefront deflection, and holograms[J]. Adv Opt Mater, 2017, 5(2): 1600716. doi: 10.1002/adom.201600716
[90] Shimura T, Kinoshita T, Koto Y, et al. Birefringent reconfigurable metasurface at visible wavelengths by MEMS nanograting[J]. Appl Phys Lett, 2018, 113(17): 171905. doi: 10.1063/1.5046976
[91] Roy T, Zhang S Y, Jung I W, et al. Dynamic metasurface lens based on MEMS technology[J]. APL Photonics, 2018, 3(2): 021302. doi: 10.1063/1.5018865
[92] Oshita M, Takahashi H, Ajiki Y, et al. Reconfigurable surface plasmon resonance photodetector with a MEMS deformable cantilever[J]. ACS Photonics, 2020, 7(3): 673−679. doi: 10.1021/acsphotonics.9b01510
[93] He S W, Yang H M, Jiang Y H, et al. Recent advances in MEMS metasurfaces and their applications on tunable lens[J]. Micromachines, 2019, 10(8): 505. doi: 10.3390/mi10080505
[94] Kamali S M, Arbabi E, Arbabi A, et al. Highly tunable elastic dielectric metasurface lenses[J]. Laser Photonics Rev, 2016, 10(6): 1002−1008. doi: 10.1002/lpor.201600144
[95] Malek S C, Ee H S, Agarwal R. Strain multiplexed metasurface holograms on a stretchable substrate[J]. Nano Lett, 2017, 17(6): 3641−3645. doi: 10.1021/acs.nanolett.7b00807
[96] Yuan S M, Chen A L, Wang Y S. Switchable multifunctional fish-bone elastic metasurface for transmitted plate wave modulation[J]. J Sound Vib, 2020, 470: 115168. doi: 10.1016/j.jsv.2019.115168
[97] Cao L Y, Yang Z C, Xu Y L, et al. Deflecting flexural wave with high transmission by using pillared elastic metasurface[J]. Smart Mater Struct, 2018, 27(7): 075051. doi: 10.1088/1361-665X/aaca51
[98] Cao L Y, Yang Z C, Xu Y L, et al. Disordered elastic metasurfaces[J]. Phys Rev Appl, 2020, 13(1): 014054. doi: 10.1103/PhysRevApplied.13.014054
[99] Kocer H, Durna Y, Kurt H, et al. Dynamic beam splitter employing an all-dielectric metasurface based on an elastic substrate[J]. Opt Lett, 2020, 45(13): 3521−3524. doi: 10.1364/OL.392872
[100] Lee S W, Oh J H. Single-layer elastic metasurface with double negativity for anomalous refraction[J]. J Phys D Appl Phys, 2020, 53(26): 265301. doi: 10.1088/1361-6463/ab7fd6
[101] Song S C, Ma X L, Pu M B, et al. Actively tunable structural color rendering with tensile substrate[J]. Adv Opt Mater, 2017, 5(9): 1600829. doi: 10.1002/adom.201600829
[102] Tao H, Strikwerda A C, Fan K, et al. Reconfigurable terahertz metamaterials[J]. Phys Rev Lett, 2009, 103(14): 147401. doi: 10.1103/PhysRevLett.103.147401
[103] Han Z L, Kohno K, Fujita H, et al. MEMS reconfigurable metamaterial for terahertz switchable filter and modulator[J]. Opt Express, 2014, 22(18): 21326−21339. doi: 10.1364/OE.22.021326
[104] Zhao X G, Schalch J, Zhang J D, et al. Electromechanically tunable metasurface transmission waveplate at terahertz frequencies[J]. Optica, 2018, 5(3): 303−310. doi: 10.1364/OPTICA.5.000303
[105] Fu Y H, Liu A Q, Zhu W M, et al. A micromachined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators[J]. Adv Funct Mater, 2011, 21(18): 3589−3594. doi: 10.1002/adfm.201101087
[106] Ee H S, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J]. Nano Lett, 2016, 16(4): 2818−2823. doi: 10.1021/acs.nanolett.6b00618
[107] Duan X Y, Kamin S, Liu N. Dynamic plasmonic colour display[J]. Nat Commun, 2017, 8(1): 14606. doi: 10.1038/ncomms14606
[108] Yu P, Li J X, Li X, et al. Generation of switchable singular beams with dynamic metasurfaces[J]. ACS Nano, 2019, 13(6): 7100−7106. doi: 10.1021/acsnano.9b02425
[109] Li J X, Chen Y Q, Hu Y Q, et al. Magnesium-based metasurfaces for dual-function switching between dynamic holography and dynamic color display[J]. ACS Nano, 2020, 14(7): 7892−7898. doi: 10.1021/acsnano.0c01469
[110] Li J X, Kamin S, Zheng G X, et al. Addressable metasurfaces for dynamic holography and optical information encryption[J]. Sci Adv, 2018, 4(6): eaar6768. doi: 10.1126/sciadv.aar6768
[111] Duan X Y, Kamin S, Sterl F, et al. Hydrogen-regulated chiral nanoplasmonics[J]. Nano Lett, 2016, 16(2): 1462−1466. doi: 10.1021/acs.nanolett.5b05105
[112] Cui Y, Hegde R S, Phang I Y, et al. Encoding molecular information in plasmonic nanostructures for anti-counterfeiting applications[J]. Nanoscale, 2014, 6(1): 282−288. doi: 10.1039/C3NR04375D
[113] Duan X Y, Liu N. Scanning plasmonic color display[J]. ACS Nano, 2018, 12(8): 8817−8823. doi: 10.1021/acsnano.8b05467
[114] Nagasaki Y, Suzuki M, Hotta I, et al. Control of Si-based all-dielectric printing color through oxidation[J]. ACS Photonics, 2018, 5(4): 1460−1466. doi: 10.1021/acsphotonics.7b01467
[115] Kim I, Kim W S, Kim K, et al. Holographic metasurface gas sensors for instantaneous visual alarms[J]. Sci Adv, 2021, 7(15): eabe9943. doi: 10.1126/sciadv.abe9943
[116] Dai C J, Wang Z J, Shi Y Y, et al. Scalable hydrogel-based nanocavities for switchable meta-holography with dynamic color printing[J]. Nano Lett, 2022, 22(24): 9990−9996. doi: 10.1021/acs.nanolett.2c03570
[117] Zhu W M, Song Q H, Yan L B, et al. A flat lens with tunable phase gradient by using random access reconfigurable metamaterial[J]. Adv Mater, 2015, 27(32): 4739−4743. doi: 10.1002/adma.201501943
[118] Afridi A, Gieseler J, Meyer N, et al. Ultrathin tunable optomechanical metalens[J]. Nano Lett, 2023, 23(7): 2496−2501. doi: 10.1021/acs.nanolett.2c04105
[119] Shalaginov M Y, An S D, Zhang Y F, et al. Reconfigurable all-dielectric metalens with diffraction-limited performance[J]. Nat Commun, 2021, 12(1): 1225. doi: 10.1038/s41467-021-21440-9
[120] Huang L L, Chen X Z, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nat Commun, 2013, 4(1): 2808. doi: 10.1038/ncomms3808
[121] Xu Z T, Huang L L, Li X W, et al. Quantitatively correlated amplitude holography based on photon sieves[J]. Adv Opt Mater, 2020, 8(2): 1901169. doi: 10.1002/adom.201901169
[122] Overvig A C, Shrestha S, Malek S C, et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase[J]. Light Sci Appl, 2019, 8: 92. doi: 10.1038/s41377-019-0201-7
[123] Gao Y S, Fan Y B, Wang Y J, et al. Nonlinear holographic all-dielectric metasurfaces[J]. Nano Lett, 2018, 18(12): 8054−8061. doi: 10.1021/acs.nanolett.8b04311
[124] Huang Y W, Chen W T, Tsai W Y, et al. Aluminum plasmonic multicolor meta-hologram[J]. Nano Lett, 2015, 15(5): 3122−3127. doi: 10.1021/acs.nanolett.5b00184
[125] Wang E L, Niu J B, Liang Y H, et al. Complete control of multichannel, angle-multiplexed, and arbitrary spatially varying polarization fields[J]. Adv Opt Mater, 2020, 8(6): 1901674. doi: 10.1002/adom.201901674
[126] Ren H R, Fang X Y, Jang J, et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space[J]. Nat Nanotechnol, 2020, 15(11): 948−955. doi: 10.1038/s41565-020-0768-4
[127] Kim G, Kim S, Kim H, et al. Metasurface-empowered spectral and spatial light modulation for disruptive holographic displays[J]. Nanoscale, 2022, 14(12): 4380−4410. doi: 10.1039/D1NR07909C
[128] Li L L, Cui T J, Ji W, et al. Electromagnetic reprogrammable coding–metasurface holograms[J]. Nat Commun, 2017, 8(1): 197. doi: 10.1038/s41467-017-00164-9
[129] Li J X, Yu P, Zhang S, et al. Electrically-controlled digital metasurface device for light projection displays[J]. Nat Commun, 2020, 11(1): 3574. doi: 10.1038/s41467-020-17390-3
[130] Chen Y Q, Duan X Y, Matuschek M, et al. Dynamic color displays using stepwise cavity resonators[J]. Nano Lett, 2017, 17(9): 5555−5560. doi: 10.1021/acs.nanolett.7b02336
[131] Sterl F, Strohfeldt N, Walter R, et al. Magnesium as novel material for active plasmonics in the visible wavelength range[J]. Nano Lett, 2015, 15(12): 7949−7955. doi: 10.1021/acs.nanolett.5b03029
[132] Ko B, Badloe T, Rho J. Vanadium dioxide for dynamically tunable photonics[J]. ChemNanoMat, 2021, 7(7): 713−727. doi: 10.1002/cnma.202100060
[133] Kim S J, Lee D, Chae J Y, et al. Reconfigurable, vivid reflective colors based on solution-processed Fabry-Perot absorber using thermochromic vanadium dioxide[J]. Appl Surf Sci, 2021, 565: 150610. doi: 10.1016/j.apsusc.2021.150610
[134] Badloe T, Kim I, Rho J. Moth-eye shaped on-demand broadband and switchable perfect absorbers based on vanadium dioxide[J]. Sci Rep, 2020, 10(1): 4522. doi: 10.1038/s41598-020-59729-2
[135] Liu X B, Wang Q, Zhang X Q, et al. Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface[J]. Adv Opt Mater, 2019, 7(12): 1900175. doi: 10.1002/adom.201900175
[136] Kinoshita S, Yoshioka S, Miyazaki J. Physics of structural colors[J]. Rep Prog Phys, 2008, 71(7): 076401. doi: 10.1088/0034-4885/71/7/076401
[137] Ghiradella H. Light and color on the wing: structural colors in butterflies and moths[J]. Appl Opt, 1991, 30(24): 3492−3500. doi: 10.1364/AO.30.003492
[138] Zhang K, Tang Y W, Meng J S, et al. Polarization-sensitive color in butterfly scales: polarization conversion from ridges with reflecting elements[J]. Opt Express, 2014, 22(22): 27437−27450. doi: 10.1364/OE.22.027437
[139] Li K, Wang J W, Cai W F, et al. Electrically switchable, polarization-sensitive encryption based on aluminum nanoaperture arrays integrated with polymer-dispersed liquid crystals[J]. Nano Lett, 2021, 21(17): 7183−7190. doi: 10.1021/acs.nanolett.1c01947
[140] Yang W H, Qu G Y, Lai F X, et al. Dynamic bifunctional metasurfaces for holography and color display[J]. Adv Mater, 2021, 33(36): 2101258. doi: 10.1002/adma.202101258
[141] Huang Y W, Lee H W H, Sokhoyan R, et al. Gate-tunable conducting oxide metasurfaces[J]. Nano Lett, 2016, 16(9): 5319−5325. doi: 10.1021/acs.nanolett.6b00555
[142] Park J, Jeong B G, Kim S I, et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications[J]. Nat Nanotechnol, 2021, 16(1): 69−76. doi: 10.1038/s41565-020-00787-y
-
访问统计