Research and application advances of photo-responsive droplet manipulation functional surface
-
摘要:
具有特定润湿性的功能表面是人们操控液滴的重要手段。近年来基于光激励响应的润湿性功能表面发展迅速,通过光诱发材料表面产生润湿梯度力、机械形变、相变、介电泳力以及电润湿性能转变等,光响应液滴操控功能表面能够有效地操控液滴行为。本文简要回顾了光响应液滴操控功能表面的发展历程,重点介绍了其操控液滴的基本原理,分析并总结了当前该功能表面的类型、结构特点以及相应的制备技术。此外,介绍了光响应液滴操控功能表面在液滴输运、融合、分割、液滴机器人、微纳流控芯片等领域的应用,并结合光响应液滴操控功能表面的操控特点对其发展趋势和未来潜在应用进行了展望。
Abstract:Functional surface with specific wettability is one of the indispensable means for droplet manipulation. In recent years, the photo-responsive functional surface with changeable wettability has developed fast. By inducing wetting gradient force, mechanical deformation, phase transformation, dielectric electrophoresis force and electro wettability alteration on the material surface, the behavior of the droplets can be controllably manipulated by the photo-responsive functional surface. In this paper, the development of the photo-responsive functional surface for the droplet manipulation was briefly reviewed. The principles and mechanisms of the droplet manipulation with the functional surface had been expatiated. The categories, structural characteristics and corresponding preparation techniques of the functional surface were analyzed and summarized. In addition, the applications of the photo-responsive functional surface in droplet transportation, fusion, fission, liquid robot, and fluidic chips were introduced in detail. The development tendency and potential applications of the photo-responsive droplet manipulation functional surface were prospected in combination with the characteristics of the functional surface.
-
Key words:
- photo-responsive /
- functional surface /
- droplet manipulation /
- wettability
-
图 2 润湿梯度力操控液滴输运原理[41]。(a) 液滴平衡状态接触角示意;(b) 光热效应引发润湿梯度力驱动液滴;(c) 液滴输运受力分析
Figure 2. Schematic of droplet transportation by wetting gradient force[41]. (a) Contact angle of equilibrium droplet; (b) Gradient force upon droplet induced by photo-thermal effect; (c) Stress analysis of droplet transportation
图 7 光伏功能表面液滴操控原理[51]。(a) 铁杂质给体与受体能带及电子传递示意;(b) 铌酸锂晶体中Fe2+电子定向光激发示意;(c) x-cut铌酸锂晶体电场分布;(d) z-cut铌酸锂晶体电场分布
Figure 7. Mechanism of droplet manipulation on photo-voltaic functional surface[51]. (a) Sketch of the donor and acceptor levels of iron impurities and electron transport; (b) Schematic of directional photoexcitation of an Fe2+ impurity in the lithium niobate crystal, schematic of photo-voltaic electric field lines near the surface for (c) an x-cut crystal and (d) a z-cut crystal
图 13 光-电型液滴操控表面构造及液滴操控示意。(a) 光-热释电介电泳力型[39];(b) 光伏效应介电泳力型[51];(c) 光-热释电润湿型[53];(d) 光电导-电润湿型[61]
Figure 13. Structure and operation of photo-electric droplet manipulation surfaces which are categorized as the (a) photo-pyroelectric dielectric electrophoresis force[39], (b) photo-voltaic dielectric electrophoresis force[51], (c) photo-pyroelectric wettability[53], and (d) photo-conductive electric wettability[61]
图 16 光操控不同类型液滴输运效果。(a) 光-热润滑剂浸注型功能表面液滴输运[37];(b) 光-热释电介电泳力型功能表面液滴输运[66];(c) 基于润滑剂浸注型通道内的液滴输运[67]
Figure 16. Transportation of different droplets by light with (a) lubricant infused functional surface[37], (b) photo-pyroelectric dielectric electrophoresis force functional surface[66], and (c) tunnel based on lubricant infused material[67]
图 26 光响应功能表面在CdS纳米晶体合成方面的应用[81]。(a) 光操控液滴示意图;(b) 实验过程及CdS实验结果影像;(c) 多样品并行检测应用
Figure 26. Photo-responsive functional surface for CdS nanocrystal chemical synthesis[81]. (a) Schematic diagram of droplet manipulation;(b) Physical diagram and transmission electron microscopy image of CdS nanocrystals; (c) Parallel detection of multi samples
-
[1] 徐广春, 顾中言, 徐德进, 等. 稻叶表面特性及雾滴在倾角稻叶上的沉积行为[J]. 中国农业科学, 2014, 47(21): 4280−4290. doi: 10.3864/j.issn.0578-1752.2014.21.013
Xu G C, Gu Z Y, Xu D J, et al. Characteristics of rice leaf surface and droplets deposition behavior on rice leaf surface with different inclination angles[J]. Sci Agric Sin, 2014, 47(21): 4280−4290. doi: 10.3864/j.issn.0578-1752.2014.21.013
[2] Chen H W, Zhang P F, Zhang L W, et al. Continuous directional water transport on the peristome surface of Nepenthes alata[J]. Nature, 2016, 532(7): 85−89. doi: 10.1038/nature17189
[3] Cheng Q F, Li M Z, Zheng Y M, et al. Janus interface materials: Superhydrophobic air/solid interface and superoleophobic water/solid interface inspired by a lotus leaf[J]. Soft Matter, 2011, 7(13): 5948−5951. doi: 10.1039/c1sm05452j
[4] Lu Y, Sathasivam S, Song J L, et al. Robust self-cleaning surfaces that function when exposed to either air or oil[J]. Science, 2015, 347(6226): 1132−1135. doi: 10.1126/science.aaa0946
[5] Li S H, Huang J Y, Chen Z, et al. A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications[J]. J Mater Chem A, 2017, 5(1): 31−55. doi: 10.1039/C6TA07984A
[6] Li X J, Jiang C M, Zhao F N, et al. A self-charging device with bionic self-cleaning interface for energy harvesting[J]. Nano Energy, 2020, 73: 104738. doi: 10.1016/j.nanoen.2020.104738
[7] Sun G, Fang Y, Cong Q, et al. Anisotropism of the non-smooth surface of butterfly wing[J]. J Bionic Eng, 2009, 6(1): 71−76. doi: 10.1016/S1672-6529(08)60094-3
[8] Mei M, Luo D, Guo P, et al. Multi-level micro-/nanostructures of butterfly wings adapt at low temperature to water repellency[J]. Soft Matter, 2011, 7(22): 10569−10573. doi: 10.1039/c1sm06347b
[9] Ju J, Zheng Y M, Jiang L. Bioinspired one-dimensional materials for directional liquid transport[J]. Acc Chem Res, 2014, 47(8): 2342−2352. doi: 10.1021/ar5000693
[10] Ju J, Bai H, Zheng Y M, et al. A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nat Commun, 2012, 3: 1247. doi: 10.1038/ncomms2253
[11] Bai F, Wu J T, Gong G M, et al. Biomimetic “cactus spine” with hierarchical groove structure for efficient fog collection[J]. Adv Sci, 2015, 2(7): 1500047. doi: 10.1002/advs.201500047
[12] Parker A R, Lawrence C R. Water capture by a desert beetle[J]. Nature, 2001, 414(6859): 33−34. doi: 10.1038/35102108
[13] Nørgaard T, Dacke M. Fog-basking Behaviour and water collection efficiency in Namib desert darkling beetles[J]. Front Zool, 2010, 7: 23. doi: 10.1186/1742-9994-7-23
[14] Guadarrama-Cetina J, Mongruel A, Medici M G, et al. Dew condensation on desert beetle skin[J]. Eur Phys J E, 2014, 37(11): 109. doi: 10.1140/epje/i2014-14109-y
[15] Chiou P Y, Moon H, Toshiyoshi H, et al. Light actuation of liquid by optoelectrowetting[J]. Sens Actuators A Phys, 2003, 104(3): 222−228. doi: 10.1016/S0924-4247(03)00024-4
[16] Huang G Y, Li M X, Yang Q Z, et al. Magnetically actuated droplet manipulation and its potential biomedical applications[J]. ACS Appl Mater Interfaces, 2017, 9(2): 1155−1166. doi: 10.1021/acsami.6b09017
[17] Lv P, Zhang Y L, Han D D, et al. Directional droplet transport on functional surfaces with superwettabilities[J]. Adv Mater Interfaces, 2021, 8(12): 2100043. doi: 10.1002/admi.202100043
[18] Feng L, Li S, Li Y, et al. Super-hydrophobic surfaces: From natural to artificial[J]. Adv Mater, 2002, 14(24): 1857−1860. doi: 10.1002/adma.200290020
[19] Zhang S N, Huang J Y, Chen Z, et al. Bioinspired special wettability surfaces: From fundamental research to water harvesting applications[J]. Small, 2017, 13(3): 1602992. doi: 10.1002/smll.201602992
[20] Li S H, Li H J, Wang X B, et al. Super-hydrophobicity of large-area honeycomb-like aligned carbon nanotubes[J]. J Phys Chem B, 2002, 106(36): 9274−9276. doi: 10.1021/jp0209401
[21] Yang J T, Chen J C, Huang K J, et al. Droplet manipulation on a hydrophobic textured surface with roughened patterns[J]. J Microelectromech Syst, 2006, 15(3): 697−707. doi: 10.1109/JMEMS.2006.876791
[22] Zheng Y M, Bai H, Huang Z B, et al. Directional water collection on wetted spider silk[J]. Nature, 2010, 463(7281): 640−643. doi: 10.1038/nature08729
[23] Ghosh A, Ganguly R, Schutzius T M, et al. Wettability patterning for high-rate, Pumpless fluid transport on open, non-planar microfluidic platforms[J]. Lab Chip, 2014, 14(9): 1538−1550. doi: 10.1039/C3LC51406D
[24] Li A, Li H Z, Li Z, et al. Programmable droplet manipulation by a magnetic-actuated robot[J]. Sci Adv, 2020, 6(7): eaay5808. doi: 10.1126/sciadv.aay5808
[25] Gao A T, Butt H J, Steffen W, et al. Optical manipulation of liquids by thermal Marangoni flow along the air−water interfaces of a superhydrophobic surface[J]. Langmuir, 2021, 37(29): 8677−8686. doi: 10.1021/acs.langmuir.1c00539
[26] Malvadkar N A, Hancock M J, Sekeroglu K, et al. An engineered anisotropic Nanofilm with unidirectional wetting properties[J]. Nat Mater, 2010, 9(12): 1023−1028. doi: 10.1038/nmat2864
[27] Tian D L, Zhang N, Zheng X, et al. Fast responsive and controllable liquid transport on a magnetic fluid/Nanoarray composite interface[J]. ACS Nano, 2016, 10(6): 6220−6226. doi: 10.1021/acsnano.6b02318
[28] Cheng Z J, Zhang D J, Lv T, et al. Superhydrophobic shape memory polymer arrays with switchable isotropic/anisotropic wetting[J]. Adv Funct Mater, 2018, 28(7): 1705002. doi: 10.1002/adfm.201705002
[29] Rao Q Q, Li A, Zhang J W, et al. Multi-functional fluorinated ionic liquid infused slippery surfaces with dual-responsive wettability switching and self-repairing[J]. J Mater Chem A, 2019, 7(5): 2172−2183. doi: 10.1039/C8TA08956F
[30] Yang D Q, Piech M, Bell N, et al. Photon control of liquid motion on reversibly photoresponsive surfaces[J]. Langmuir, 2007, 23(21): 10864−10872. doi: 10.1021/la701507r
[31] Diguet A, Guillermic R M, Magome N, et al. Photomanipulation of a droplet by the chromocapillary effect[J]. Angew Chem Int Ed, 2009, 48(49): 9281−9284. doi: 10.1002/anie.200904868
[32] Ichikawa M, Takabatake F, Miura K, et al. Controlling negative and positive photothermal migration of centimeter-sized droplets[J]. Phys Rev E, 2013, 88(1): 012403. doi: 10.1103/PhysRevE.88.012403
[33] Kwon G, Panchanathan D, Mahmoudi S R et al. Visible light guided manipulation of liquid wettability on photoresponsive surfaces[J]. Nat Commun, 2017, 8(1): 14968. doi: 10.1038/ncomms14968
[34] Siewierski L M, Brittain W J, Petrash S, et al. Photoresponsive monolayers containing in-chain azobenzene[J]. Langmuir, 1996, 12(24): 5838−5844. doi: 10.1021/la960506o
[35] Ichimura K, Oh S K, Nakagawa M. Light-driven motion of liquids on a photoresponsive surface[J]. Science, 2000, 288(5471): 1624−1626. doi: 10.1126/science.288.5471.1624
[36] Berná J, Leigh D A, Lubomska M, et al. Macroscopic transport by synthetic molecular machines[J]. Sci Mater, 2005, 4(9): 704−710. doi: 10.1038/nmat1455
[37] Wang J, Gao W, Zhang H, et al. Programmable wettability on photocontrolled graphene film[J]. Sci Adv, 2018, 4(9): eaat7392. doi: 10.1126/sciadv.aat7392
[38] Wu S Z, Zhou L L, Chen C, et al. Photothermal actuation of diverse liquids on an Fe3O4-doped slippery surface for electric switching and cell culture[J]. Langmuir, 2019, 35(43): 13915−13922. doi: 10.1021/acs.langmuir.9b02068
[39] Li W, Tang X, Wang L Q. Photopyroelectric microfluidics[J]. Sci Adv, 2020, 6(38): eabc1693. doi: 10.1126/sciadv.abc1693
[40] Bai X, Yong J L, Shan C, et al. Remote, selective, and in situ manipulation of liquid droplets on a femtosecond laser-structured superhydrophobic shape-memory polymer by near-infrared light[J]. Sci China Chem, 2021, 64(5): 861−872. doi: 10.1007/s11426-020-9940-6
[41] Gao C L, Wang L, Lin Y C, et al. Droplets manipulated on photothermal organogel surfaces[J]. Adv Funct Mater, 2018, 28(35): 1803072. doi: 10.1002/adfm.201803072
[42] Smith J D, Dhiman R, Anand S, et al. Droplet mobility on lubricant-impregnated surfaces[J]. Soft Matter, 2013, 9(6): 1772−1780. doi: 10.1039/C2SM27032C
[43] Chaudhury M K, Whitesides G M. How to make water run uphill[J]. Science, 1992, 256(5063): 1539−1541. doi: 10.1126/science.256.5063.1539
[44] Nikolov A D, Wasan D T, Chengaraa A, et al. Superspreading driven by Marangoni flow[J]. Adv Colloid Interface Sci, 2002, 96(1–3): 325−338. doi: 10.1016/S0001-8686(01)00087-2
[45] Jiao Z Z, Zhou H, Han X C, et al. Photothermal responsive slippery surfaces based on laser-structured graphene@PVDF composites[J]. J Colloid Interface Sci, 2023, 629: 582−592. doi: 10.1016/J.JCIS.2022.08.153
[46] Li Q, Wu D H, Guo Z G. Drop/bubble transportation and controllable manipulation on patterned slippery lubricant infused surfaces with tunable wettability[J]. Soft Matter, 2019, 15(34): 6803−6810. doi: 10.1039/C9SM01167F
[47] Chen C, Huang Z C, Jiao Y L, et al. In situ reversible control between sliding and pinning for diverse liquids under ultra-low voltage[J]. ACS Nano, 2019, 13(5): 5742−5752. doi: 10.1021/acsnano.9b01180
[48] Li W, Lei Y P, Chen R, et al. Light-caused droplet bouncing from a cavity trap-assisted superhydrophobic surface[J]. Langmuir, 2020, 36(37): 11068−11078. doi: 10.1021/acs.langmuir.0c02062
[49] Habault D, Zhang H J, Zhao Y. Light-triggered self-healing and shape-memory polymers[J]. Chem Soc Rev, 2013, 42(17): 7244−7256. doi: 10.1039/c3cs35489j
[50] Li Z, Zhang X Y, Wang S Q, et al. Polydopamine coated shape memory polymer: enabling light triggered shape recovery, light controlled shape reprogramming and surface functionalization[J]. Chem Sci, 2016, 7(7): 4741−4747. doi: 10.1039/C6SC00584E
[51] Puerto A, Méndez A, Arizmendi L, et al. Optoelectronic manipulation, trapping, splitting, and merging of water droplets and aqueous biodroplets based on the bulk photovoltaic effect[J]. Phys Rev Appl, 2020, 14(2): 024046. doi: 10.1103/PhysRevApplied.14.024046
[52] Arizmendi L. Photonic applications of lithium niobate crystals[J]. Phys Status Solidi (A), 2004, 201(2): 253−283. doi: 10.1002/pssa.200303911
[53] Yan W S, Zhao C P, Luo W Y, et al. Optically guided pyroelectric manipulation of water droplet on a superhydrophobic surface[J]. ACS Appl Mater Interfaces, 2021, 13(19): 23181−23190. doi: 10.1021/acsami.1c03407
[54] Thio S K, Bae S, Park S Y. Plasmonic nanoparticle-enhanced optoelectrowetting (OEW) for effective light-driven droplet manipulation[J]. Sens Actuators B Chem, 2020, 308: 127704. doi: 10.1016/j.snb.2020.127704
[55] Ashkin A, Dziedzic J M. Radiation pressure on a free liquid surface[J]. Phys Rev Lett, 1973, 30(4): 139−142. doi: 10.1103/PhysRevLett.30.139
[56] Han K Y, Wang Z B, Heng L P, et al. Photothermal slippery surfaces towards spatial droplet manipulation[J]. J Mater Chem A, 2021, 9(31): 16974−16981. doi: 10.1039/D1TA04243B
[57] Paula K T, Silva K L C, Mattos A V A, et al. Controlling surface wettability in methacrylic copolymer containing azobenzene by fs-laser microstructuring[J]. Opt Mater, 2021, 116: 111083. doi: 10.1016/j.optmat.2021.111083
[58] Milles S, Dahms J, Voisiat B, et al. Wetting properties of aluminium surface structures fabricated using direct laser interference patterning with picosecond and femtosecond pulses[J]. J Laser Micro/Nanoeng, 2021, 16(1): 74−79. doi: 10.2961/jlmn.2021.01.3001
[59] Dou H Q, Liu H, Xu S Z, et al. Influence of laser Fluences and scan speeds on the morphologies and wetting properties of titanium alloy[J]. Optik, 2020, 224: 165443. doi: 10.1016/j.ijleo.2020.165443
[60] 杨青, 成扬, 方政, 等. 仿生超滑表面的飞秒激光微纳制造及应用[J]. 光电工程, 2022, 49(1): 210326. doi: 10.12086/oee.2022.210326
Yang Q, Cheng Y, Fang Z, et al. The preparation and applications of bio-inspired slippery surface by femtosecond laser micro-Nano manufacturing[J]. Opto-Electron Eng, 2022, 49(1): 210326. doi: 10.12086/oee.2022.210326
[61] Chiou P Y, Chang Z H, Wu M C. Droplet manipulation with light on optoelectrowetting device[J]. J Microelectromech Syst, 2008, 17(1): 133−138. doi: 10.1109/JMEMS.2007.904336
[62] Venancio-Marques A, Baigl D. Digital optofluidics: LED-gated transport and fusion of microliter-sized organic droplets for chemical synthesis[J]. Langmuir, 2014, 30(15): 4207−4212. doi: 10.1021/la5001254
[63] Lv J A, Liu Y Y, Wei J, et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators[J]. Nature, 2016, 537(7619): 179−184. doi: 10.1038/nature19344
[64] Zhao Y Z, Su Y L, Hou X Y, et al. Directional sliding of water: biomimetic snake scale surfaces[J]. Opto-Electron Adv, 2021, 4(4): 210008. doi: 10.29026/oea.2021.210008
[65] 矫知真, 韩星尘, 周昊, 等. 光/电响应型超滑表面的激光加工制备[J]. 光电工程, 2022, 49(2): 210356. doi: 10.12086/oee.2022.210356
Jiao Z Z, Han X C, Zhou H, et al. Laser fabrication of light/voltage-responsive slippery liquid-infused porous substrate (SLIPS)[J]. Opto-Electron Eng, 2022, 49(2): 210356. doi: 10.12086/oee.2022.210356
[66] Tang X, Wang L Q. Loss-free photo-manipulation of droplets by pyroelectro-trapping on superhydrophobic surfaces[J]. ACS Nano, 2018, 12(9): 8994−9004. doi: 10.1021/acsnano.8b02470
[67] Huang T, Zhang L, Lao J C, et al. Reliable and low temperature actuation of water and oil slugs in Janus photothermal slippery tube[J]. ACS Appl Mater Interfaces, 2022, 14(15): 17968−17974. doi: 10.1021/acsami.2c01205
[68] Sun Q Q, Wang D H, Li Y N, et al. Surface charge printing for programmed droplet transport[J]. Nat Mater, 2019, 18(9): 936−941. doi: 10.1038/s41563-019-0440-2
[69] Li J, Ha N S, Liu T L, et al. Ionic-surfactant-mediated electro-Dewetting for digital microfluidics[J]. Nature, 2019, 572(7770): 507−510. doi: 10.1038/s41586-019-1491-x
[70] Wang F, Liu M J, Liu C, et al. Light control of droplets on photo-induced charged surfaces[J]. Natl Sci Rev, 2023, 10(1): nwac164. doi: 10.1093/NSR/NWAC164
[71] Ren H T, Jin H, Shu J, et al. Light-controlled versatile manipulation of liquid metal droplets: a gateway to future liquid robots[J]. Mater Horiz, 2021, 8(11): 3063−3071. doi: 10.1039/d1mh00647a
[72] Paven M, Mayama H, Sekido T, et al. Light-driven delivery and release of materials using liquid marbles[J]. Adv Funct Mater, 2016, 26(19): 3199−3206. doi: 10.1002/adfm.201600034
[73] Nagy P T, Neitzel G P. Optical levitation and transport of Microdroplets: proof of concept[J]. Phys Fluids, 2008, 20(10): 101703. doi: 10.1063/1.3005394
[74] Park S Y, Chiou P Y. Light-driven droplet manipulation technologies for lab-on-a-chip applications[J]. Adv OptoElectron, 2011, 2011: 909174. doi: 10.1155/2011/909174
[75] Hu S W, Xu B Y, Ye W K, et al. Versatile microfluidic droplets array for bioanalysis[J]. ACS Appl Mater Interfaces, 2015, 7(1): 935−940. doi: 10.1021/am5075216
[76] Wang F, Liu M J, Liu C, et al. Light-induced charged slippery surfaces[J]. Sci Adv, 2022, 8(27): eabp9369. doi: 10.1126/sciadv.abp9369
[77] Coughlin S R. Thrombin Signalling and protease-activated receptors[J]. Nature, 2000, 407(6801): 258−264. doi: 10.1038/35025229
[78] Hemker H C, Giesen P L, Ramjee M, et al. The thrombogram: monitoring thrombin generation in platelet-rich plasma[J]. Thromb Haemost, 2000, 83(4): 589−591. doi: 10.1055/s-0037-1613868
[79] Thrivikraman G, Boda S K, Basu B. Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: a tissue engineering perspective[J]. Biomaterials, 2018, 150: 60−86. doi: 10.1016/j.biomaterials.2017.10.003
[80] McCaig C D, Song B, Rajnicek A M. Electrical dimensions in cell science[J]. J Cell Sci, 2009, 122(23): 4267−4276. doi: 10.1242/jcs.023564
[81] Sun L Y, Bian F K, Wang Y, et al. Bioinspired programmable wettability arrays for droplets manipulation[J]. Proc Natl Acad Sci, 2020, 117(9): 4527−4532. doi: 10.1073/pnas.1921281117
[82] Chen C, Huang Z C, Shi L A, et al. Remote photothermal actuation of underwater bubble toward arbitrary direction on planar slippery Fe3O4-doped surfaces[J]. Adv Funct Mater, 2019, 29(40): 1904766. doi: 10.1002/adfm.201904766
[83] Dai L G, Lin D J, Wang X D, et al. Integrated assembly and flexible movement of microparts using multifunctional bubble microrobots[J]. ACS Appl Mater Interfaces, 2020, 12(51): 57587−57597. doi: 10.1021/acsami.0c17518
[84] Hu M, Wang F, Chen L, et al. Near-infrared-laser-navigated dancing bubble within water via a thermally conductive interface[J]. Nat Commun, 2022, 13(1): 5749. doi: 10.1038/s41467-022-33424-4
[85] Čejková J, Banno T, Hanczyc M M, et al. Droplets as liquid robots[J]. Artif Life, 2017, 23(4): 528−549. doi: 10.1162/ARTL_a_00243
[86] Baigl D. Photo-actuation of liquids for light-driven microfluidics: state of the art and perspectives[J]. Lab Chip, 2012, 12(19): 3637−3653. doi: 10.1039/c2lc40596b
[87] Bormashenko E, Pogreb R, Bormashenko Y, et al. New investigations on ferrofluidics: ferrofluidic marbles and magnetic-field-driven drops on superhydrophobic surfaces[J]. Langmuir, 2008, 24(21): 12119−12122. doi: 10.1021/la802355y
[88] Dorvee J R, Sailor M J, Miskelly G M, et al. Digital microfluidics and delivery of molecular payloads with magnetic porous silicon chaperones[J]. Dalton Trans, 2008(6): 721−730. doi: 10.1039/b714594b
[89] Goss C H, Kaneko Y, Khuu Y et al. Gallium disrupts bacterial iron metabolism and has therapeutic effects in mice and humans with lung infections[J]. Sci Transl Med, 2018, 10(460): eaat7520.
[90] Fan X J, Dong X G, Karacakol A C, et al. Reconfigurable multifunctional ferrofluid droplet robots[J]. Proc Natl Acad Sci USA, 2020, 117(45): 27916−27926. doi: 10.1073/pnas.2016388117
[91] Markvicka E J, Bartlett M D, Huang X N, et al. An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics[J]. Nat Mater, 2018, 17(7): 618−624. doi: 10.1038/s41563-018-0084-7
[92] Park S Y, Kalim S, Callahan C, et al. A light-induced dielectrophoretic droplet manipulation platform[J]. Lab Chip, 2009, 9(22): 3228−3235. doi: 10.1039/b909158k
[93] Park S Y, Teitell M A, Chiou E P Y. Single-sided continuous optoelectrowetting (SCOEW) for droplet manipulation with light patterns[J]. Lab Chip, 2010, 10(13): 1655−1661. doi: 10.1039/c001324b
[94] Song H, Chen D L, Ismagilov R F. Reactions in droplets in microfluidic channels[J]. Angew Chem Int Ed, 2006, 45(44): 7336−7356. doi: 10.1002/anie.200601554
[95] Wu Y C, Feng J G, Gao H F, et al. Superwettability-based interfacial chemical reactions[J]. Adv Mater, 2019, 31(8): 1800718. doi: 10.1002/adma.201800718
[96] Yang Z J, Wei J J, Sobolev Y I, et al. Systems of Mechanized and Reactive Droplets Powered by Multi-responsive Surfactants[J]. Nature, 2018, 553(7688): 313−318. doi: 10.1038/nature25137
[97] Wang Y, Jin R N, Shen B Q, et al. High-throughput functional screening for next-generation cancer immunotherapy using droplet-based microfluidics[J]. Sci Adv, 2021, 7(24): eabe3839. doi: 10.1126/sciadv.abe3839
[98] Mongera A, Rowghanian P, Gustafson H J, et al. A fluid-to-solid jamming transition underlies vertebrate body axis elongation[J]. Nature, 2018, 561(7723): 401−405. doi: 10.1038/s41586-018-0479-2
[99] Bawazer L A, McNally C S, Empson C J, et al. Combinatorial microfluidic droplet engineering for biomimetic material synthesis[J]. Sci Adv, 2016, 2(10): e1600567. doi: 10.1126/sciadv.1600567
[100] Sarkar M S K A, Donne S W, Evans G M. Hydrogen bubble flotation of silica[J]. Adv Powder Technol, 2010, 21(4): 412−418. doi: 10.1016/j.apt.2010.04.005
[101] Warnier M J F, De Croon M H J M, Rebrov E V, et al. Pressure drop of gas–liquid Taylor flow in round micro-capillaries for low to intermediate Reynolds numbers[J]. Microfluid Nanofluid, 2010, 8(1): 33−45. doi: 10.1007/s10404-009-0448-z