New website getting online, testing
Self-similarity enhancement network for image super-resolution
  • Abstract

    Deep convolutional neural networks (DCNN) recently demonstrated high-quality restoration in the single image super-resolution (SISR). However, most of the existing image super-resolution methods only consider making full use of the inherent static characteristics of the training sets, ignoring the internal self-similarity of low-resolution images. In this paper, a self-similarity enhancement network (SSEN) is proposed to address above-mentioned problems. Specifically, we embedded the deformable convolution into the pyramid structure and combined it with the cross-level co-attention to design a module that can fully mine multi-level self-similarity, namely the cross-level feature enhancement module. In addition, we introduce a pooling attention mechanism into the stacked residual dense blocks, which uses a strip pooling to expand the receptive field of the convolutional neural network and establish remote dependencies within the deep features, so that the patches with high similarity in deep features can complement each other. Extensive experiments on five benchmark datasets have shown that the SSEN has a significant improvement in reconstruction effect compared with the existing methods.

    Keywords

  • loading
  • References

    [1]

    Zhang L, Wu X L. An edge-guided image interpolation algorithm via directional filtering and data fusion[J]. IEEE Trans Image Process, 2006, 15(8): 2226−2238.

    DOI: 10.1109/TIP.2006.877407

    CrossRef Google Scholar

    [2]

    Li X Y, He H J, Wang R X, et al. Single image superresolution via directional group sparsity and directional features[J]. IEEE Trans Image Process, 2015, 24(9): 2874−2888.

    DOI: 10.1109/TIP.2015.2432713

    CrossRef Google Scholar

    [3]

    Zhang K B, Gao X B, Tao D C, et al. Single image super-resolution with non-local means and steering kernel regression[J]. IEEE Trans Image Process, 2012, 21(11): 4544−4556.

    DOI: 10.1109/TIP.2012.2208977

    CrossRef Google Scholar

    [4]

    徐亮, 符冉迪, 金炜, 等. 基于多尺度特征损失函数的图像超分辨率重建[J]. 光电工程, 2019, 46(11): 180419.

    Xu L, Fu R D, Jin W, et al. Image super-resolution reconstruction based on multi-scale feature loss function[J]. Opto-Electron Eng, 2019, 46(11): 180419.

    Google Scholar

    [5]

    Huang J B, Singh A, Ahuja N. Single image super-resolution from transformed self-exemplars[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, 2015: 5197–5206.

    Google Scholar

    [6]

    沈明玉, 俞鹏飞, 汪荣贵, 等. 多路径递归网络结构的单帧图像超分辨率重建[J]. 光电工程, 2019, 46(11): 180489.

    Shen M Y, Yu P F, Wang R G, et al. Image super-resolution via multi-path recursive convolutional network[J]. Opto-Electron Eng, 2019, 46(11): 180489.

    Google Scholar

    View full references list
  • Cited by

    Periodical cited type(5)

    1. 任坤,李峥瑱,桂源泽,范春奇,栾衡. 低分辨率随机遮挡人脸图像的超分辨率修复. 电子与信息学报. 2024(08): 3343-3352 .
    2. 陈明惠,芦焱琦,杨文逸,王援柱,邵怡. OCT图像多教师知识蒸馏超分辨率重建. 光电工程. 2024(07): 103-115 . 本站查看
    3. 彭晏飞,李泳欣,孟欣,崔芸. 金字塔方差池化网络的图像超分辨率重建. 液晶与显示. 2024(10): 1380-1390 .
    4. 张家瑞,张磊,胡仕林,谢家旭. 基于改进自注意力机制的电力设备热成像超分辨率方法. 电子设计工程. 2023(07): 141-145 .
    5. 邓酩,柳庆龙,侯立宪. 多尺度残差生成对抗网络的图像超分辨率重建. 科学技术与工程. 2023(31): 13472-13481 .

    Other cited types(0)

  • Author Information

  • Copyright

    The copyright belongs to the Institute of Optics and Electronics, Chinese Academy of Sciences, but the article content can be freely downloaded from this website and used for free in academic and research work.
  • About this Article

    DOI: 10.12086/oee.2022.210382
    Cite this Article
    Wang Ronggui, Lei Hui, Yang Juan, Xue Lixia. Self-similarity enhancement network for image super-resolution. Opto-Electronic Engineering 49, 210382 (2022). DOI: 10.12086/oee.2022.210382
    Download Citation
    Article History
    • Received Date November 25, 2021
    • Revised Date February 20, 2022
    • Published Date May 24, 2022
    Article Metrics
    Article Views(4599) PDF Downloads(776)
    Share:
  • Related Articles

  • ScaleMethodSet5Set14BSD100Urban100Manga109
    PSNR/SSIMPSNR/SSIMPSNR/SSIMPSNR/SSIMPSNR/SSIM
    Bicubic33.66/0.929930.24/0.868829.56/0.843126.88/0.840930.80/0.9339
    SRCNN[7]36.66/0.954232.45/0.906731.36/0.887929.50/0.894635.60/0.9663
    VDSR[8]37.53/0.959033.05/0.913031.90/0.896030.77/0.914037.22/0.9750
    M2SR[23]38.01/0.960733.72/0.920232.17/0.899732.20/0.929538.71/0.9772
    LapSRN[34]37.52/0.959133.08/0.913031.80/0.895030.41/0.910037.27/0.9740
    PMRN[35]38.13/0.960933.85/0.920432.28/0.901032.59/0.932838.91/0.9775
    OISR-RK2[37]38.12/0.960933.80/0.919332.26/0.900632.48/0.9317
    DBPN[38]38.09/0.960033.85/0.919032.27/0.900032.55/0.932438.89/0.9775
    RDN[36]38.24/0.961434.01/0.921232.34/0.901732.89/0.935339.18/0.9780
    SSEN(ours)38.11/0.960933.92/0.920432.28/0.901132.87/0.935139.06/0.9778
    Bicubic30.39/0.868227.55/0.774227.21/0.738524.46/0.734926.96/0.8546
    SRCNN[7]32.75/0.909029.28/0.820928.41/0.786326.24/0.798930.59/0.9107
    VDSR[8]33.66/0.921329.77/0.831428.82/0.797627.14/0.827932.01/0.9310
    M2SR[23]34.43/0.927530.39/0.844029.11/0.805628.29/0.855133.59/0.9447
    LapSRN[34]33.82/0.922729.79/0.832028.82/0.797327.07/0.827232.19/0.9334
    PMRN[35]
    OISR-RK2[37]
    34.57/0.9280
    34.55/0.9282
    30.43/0.8444
    30.46/0.8443
    29.19/0.8075
    29.18/0.8075
    28.51/0.8601
    28.50/0.8597
    33.85/0.9465
    RDN[36]34.71/0.929630.57/0.846829.26/0.809328.80/0.865334.13/0.9484
    SSEN(ours)34.64/0.928930.53/0.846229.20/0.807928.66/0.863534.01/0.9474
    Bicubic28.42/0.810426.00/0.702725.96/0.667523.14/0.657724.89/0.7866
    SRCNN[7]30.48/0.862827.50/0.751326.90/0.710124.52/0.722127.58/0.8555
    VDSR[8]31.35/0.883828.02/0.768027.29/0.726025.18/0.754028.83/0.8870
    M2SR[23]32.23/0.895228.67/0.783727.60/0.737326.19/0.788930.51/0.9093
    LapSRN[34]31.54/0.885028.19/0.772027.32/0.727025.21/0.755129.09/0.8900
    PMRN[35]32.34/0.897128.71/0.785027.66/0.739226.37/0.795030.71/0.9107
    OISR-RK2[37]32.32/0.896528.72/0.784327.66/0.739026.37/0.7953
    DBPN[38]32.47/0.898028.82/0.786027.72/0.740026.38/0.794630.91/0.9137
    RDN[36]32.47/0.899028.81/0.787127.72/0.741926.61/0.802831.00/0.9151
    SSEN(ours)32.42/0.898228.79/0.786427.69/0.740026.49/0.799330.88/0.9132
    View in article Downloads
  • Baseline
    CLFE × ×
    Cascaded PADB × ×
    PSNR/dB 32.28 32.35 32.37 32.42
    SSIM 0.8962 0.8971 0.8972 0.8982
    View in article Downloads
  • 模型参数计算量PSNR/dBSSIM
    RDN[36]22M5096G34.010.9212
    OISR-RK3[37]42M9657G33.940.9206
    DBPN[38]10M2189G33.850.9190
    EDSR[39]41M9385G33.920.9195
    SSEN15M3436G33.920.9204
    View in article Downloads
[1]

Zhang L, Wu X L. An edge-guided image interpolation algorithm via directional filtering and data fusion[J]. IEEE Trans Image Process, 2006, 15(8): 2226−2238.

DOI: 10.1109/TIP.2006.877407

CrossRef Google Scholar

[2]

Li X Y, He H J, Wang R X, et al. Single image superresolution via directional group sparsity and directional features[J]. IEEE Trans Image Process, 2015, 24(9): 2874−2888.

DOI: 10.1109/TIP.2015.2432713

CrossRef Google Scholar

[3]

Zhang K B, Gao X B, Tao D C, et al. Single image super-resolution with non-local means and steering kernel regression[J]. IEEE Trans Image Process, 2012, 21(11): 4544−4556.

DOI: 10.1109/TIP.2012.2208977

CrossRef Google Scholar

[4]

徐亮, 符冉迪, 金炜, 等. 基于多尺度特征损失函数的图像超分辨率重建[J]. 光电工程, 2019, 46(11): 180419.

Xu L, Fu R D, Jin W, et al. Image super-resolution reconstruction based on multi-scale feature loss function[J]. Opto-Electron Eng, 2019, 46(11): 180419.

Google Scholar

[5]

Huang J B, Singh A, Ahuja N. Single image super-resolution from transformed self-exemplars[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, 2015: 5197–5206.

Google Scholar

[6]

沈明玉, 俞鹏飞, 汪荣贵, 等. 多路径递归网络结构的单帧图像超分辨率重建[J]. 光电工程, 2019, 46(11): 180489.

Shen M Y, Yu P F, Wang R G, et al. Image super-resolution via multi-path recursive convolutional network[J]. Opto-Electron Eng, 2019, 46(11): 180489.

Google Scholar

[7]

Dong C, Loy C C, He K M, et al. Learning a deep convolutional network for image super-resolution[C]//Proceedings of the 13th European Conference on Computer Vision, 2014: 184–199.

Google Scholar

[8]

Kim J, Lee J K, Lee K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1646–1654.

Google Scholar

[9]

Hui Z, Gao X B, Yang Y C, et al. Lightweight image super-resolution with information multi-distillation network[C]//Proceedings of the 27th ACM International Conference on Multimedia, 2019: 2024–2032.

Google Scholar

[10]

Liu S T, Huang D, Wang Y H. Receptive field block net for accurate and fast object detection[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 404–419.

Google Scholar

[11]

Dai T, Cai J R, Zhang Y B, et al. Second-order attention network for single image super-resolution[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 11057–11066.

Google Scholar

[12]

Mei Y Q, Fan Y C, Zhou Y Q, et al. Image super-resolution with cross-scale non-local attention and exhaustive self-exemplars mining[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 5689–5698.

Google Scholar

[13]

Jaderberg M, Simonyan K, Zisserman A, et al. Spatial transformer networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems, 2015: 2017–2025.

Google Scholar

[14]

Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 7132–7141.

Google Scholar

[15]

Zhang Y L, Li K P, Li K, et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 294–310.

Google Scholar

[16]

Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 3–19.

Google Scholar

[17]

Sun K, Zhao Y, Jiang B R, et al. High-resolution representations for labeling pixels and regions[Z]. arXiv: 1904.04514, 2019. https://arxiv.org/abs/1904.04514.

https://arxiv.org/abs/1904.04514.

" target="_blank">Google Scholar

[18]

Newell A, Yang K Y, Deng J. Stacked hourglass networks for human pose estimation[C]//Proceedings of the 14th European Conference on Computer Vision, 2016: 483–499.

Google Scholar

[19]

Ke T W, Maire M, Yu S X. Multigrid neural architectures[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4067–4075.

Google Scholar

[20]

Chen Y P, Fan H Q, Xu B, et al. Drop an octave: reducing spatial redundancy in convolutional neural networks with octave convolution[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision, 2019: 3434–3443.

Google Scholar

[21]

Han W, Chang S Y, Liu D, et al. Image super-resolution via dual-state recurrent networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 1654–1663.

Google Scholar

[22]

Li J C, Fang F M, Mei K F, et al. Multi-scale residual network for image super-resolution[C]//Proceedings of the 15th European Conference on Computer Vision (ECCV), 2018: 527–542.

Google Scholar

[23]

Yang Y, Zhang D Y, Huang S Y, et al. Multilevel and multiscale network for single-image super-resolution[J]. IEEE Signal Process Lett, 2019, 26(12): 1877−1881.

DOI: 10.1109/LSP.2019.2952047

CrossRef Google Scholar

[24]

Feng R C, Guan W P, Qiao Y, et al. Exploring multi-scale feature propagation and communication for image super resolution[Z]. arXiv: 2008.00239, 2020. https://arxiv.org/abs/2008.00239v2.

https://arxiv.org/abs/2008.00239v2.

" target="_blank">Google Scholar

[25]

Dai JF, Qi H Z, Xiong Y W, et al. Deformable convolutional networks[C]//Proceedings of 2017 IEEE International Conference on Computer Vision, 2017: 764–773.

Google Scholar

[26]

Zhu X Z, Hu H, Lin S, et al. Deformable ConvNets V2: more deformable, better results[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 9300–9308.

Google Scholar

[27]

Wang X T, Yu K, Wu S X, et al. ESRGAN: enhanced super-resolution generative adversarial networks[C]//Proceedings of 2018 European Conference on Computer Vision, 2018: 63–79.

Google Scholar

[28]

Hou Q B, Zhang L, Cheng M M, et al. Strip pooling: rethinking spatial pooling for scene parsing[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 4002–4011.

Google Scholar

[29]

Agustsson E, Timofte R. NTIRE 2017 challenge on single image super-resolution: dataset and study[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017: 1122–1131.

Google Scholar

[30]

Bevilacqua M, Roumy A, Guillemot C, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]//Proceedings of the British Machine Vision Conference, 2012.

Google Scholar

[31]

Zeyde R, Elad M, Protter M. On single image scale-up using sparse-representations[C]//Proceedings of the 7th International Conference on Curves and Surfaces, 2010: 711–730.

Google Scholar

[32]

Martin D, Fowlkes C, Tal D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings Eighth IEEE International Conference on Computer Vision, 2001: 416–423.

Google Scholar

[33]

Matsui Y, Ito K, Aramaki Y, et al. Sketch-based manga retrieval using manga109 dataset[J]. Multimed Tools Appl, 2017, 76(20): 21811−21838.

DOI: 10.1007/s11042-016-4020-z

CrossRef Google Scholar

[34]

Lai W S, Huang J B, Ahuja N, et al. Deep laplacian pyramid networks for fast and accurate super-resolution[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5835–5843.

Google Scholar

[35]

Liu Y Q, Zhang X F, Wang S S, et al. Progressive multi-scale residual network for single image super-resolution[Z]. arXiv: 2007.09552, 2020. https://arxiv.org/abs/2007.09552v3.

https://arxiv.org/abs/2007.09552v3.

" target="_blank">Google Scholar

[36]

Zhang Y L, Tian Y P, Kong Y, et al. Residual dense network for image super-resolution[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 2472–2481.

Google Scholar

[37]

He X Y, Mo Z T, Wang P S, et al. ODE-inspired network design for single image super-resolution[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 1732–1741.

Google Scholar

[38]

Haris M, Shakhnarovich G, Ukita N. Deep back-projection networks for super-resolution[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 1664–1673.

Google Scholar

[39]

Lim B, Son S, Kim H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017: 1132–1140.

Google Scholar

Related Articles
Show full outline

Catalog

    Xue Lixia, 51003239@qq.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Self-similarity enhancement network for image super-resolution
    • Figure  1
    • Figure  2
    • Figure  3
    • Figure  4
    • Figure  5
    • Figure  6
    • Figure  7
    • Figure  8
    • Figure  9
    • Figure  10
    • Figure  11
    Self-similarity enhancement network for image super-resolution
    • ScaleMethodSet5Set14BSD100Urban100Manga109
      PSNR/SSIMPSNR/SSIMPSNR/SSIMPSNR/SSIMPSNR/SSIM
      Bicubic33.66/0.929930.24/0.868829.56/0.843126.88/0.840930.80/0.9339
      SRCNN[7]36.66/0.954232.45/0.906731.36/0.887929.50/0.894635.60/0.9663
      VDSR[8]37.53/0.959033.05/0.913031.90/0.896030.77/0.914037.22/0.9750
      M2SR[23]38.01/0.960733.72/0.920232.17/0.899732.20/0.929538.71/0.9772
      LapSRN[34]37.52/0.959133.08/0.913031.80/0.895030.41/0.910037.27/0.9740
      PMRN[35]38.13/0.960933.85/0.920432.28/0.901032.59/0.932838.91/0.9775
      OISR-RK2[37]38.12/0.960933.80/0.919332.26/0.900632.48/0.9317
      DBPN[38]38.09/0.960033.85/0.919032.27/0.900032.55/0.932438.89/0.9775
      RDN[36]38.24/0.961434.01/0.921232.34/0.901732.89/0.935339.18/0.9780
      SSEN(ours)38.11/0.960933.92/0.920432.28/0.901132.87/0.935139.06/0.9778
      Bicubic30.39/0.868227.55/0.774227.21/0.738524.46/0.734926.96/0.8546
      SRCNN[7]32.75/0.909029.28/0.820928.41/0.786326.24/0.798930.59/0.9107
      VDSR[8]33.66/0.921329.77/0.831428.82/0.797627.14/0.827932.01/0.9310
      M2SR[23]34.43/0.927530.39/0.844029.11/0.805628.29/0.855133.59/0.9447
      LapSRN[34]33.82/0.922729.79/0.832028.82/0.797327.07/0.827232.19/0.9334
      PMRN[35]
      OISR-RK2[37]
      34.57/0.9280
      34.55/0.9282
      30.43/0.8444
      30.46/0.8443
      29.19/0.8075
      29.18/0.8075
      28.51/0.8601
      28.50/0.8597
      33.85/0.9465
      RDN[36]34.71/0.929630.57/0.846829.26/0.809328.80/0.865334.13/0.9484
      SSEN(ours)34.64/0.928930.53/0.846229.20/0.807928.66/0.863534.01/0.9474
      Bicubic28.42/0.810426.00/0.702725.96/0.667523.14/0.657724.89/0.7866
      SRCNN[7]30.48/0.862827.50/0.751326.90/0.710124.52/0.722127.58/0.8555
      VDSR[8]31.35/0.883828.02/0.768027.29/0.726025.18/0.754028.83/0.8870
      M2SR[23]32.23/0.895228.67/0.783727.60/0.737326.19/0.788930.51/0.9093
      LapSRN[34]31.54/0.885028.19/0.772027.32/0.727025.21/0.755129.09/0.8900
      PMRN[35]32.34/0.897128.71/0.785027.66/0.739226.37/0.795030.71/0.9107
      OISR-RK2[37]32.32/0.896528.72/0.784327.66/0.739026.37/0.7953
      DBPN[38]32.47/0.898028.82/0.786027.72/0.740026.38/0.794630.91/0.9137
      RDN[36]32.47/0.899028.81/0.787127.72/0.741926.61/0.802831.00/0.9151
      SSEN(ours)32.42/0.898228.79/0.786427.69/0.740026.49/0.799330.88/0.9132
    • Baseline
      CLFE × ×
      Cascaded PADB × ×
      PSNR/dB 32.28 32.35 32.37 32.42
      SSIM 0.8962 0.8971 0.8972 0.8982
    • 模型参数计算量PSNR/dBSSIM
      RDN[36]22M5096G34.010.9212
      OISR-RK3[37]42M9657G33.940.9206
      DBPN[38]10M2189G33.850.9190
      EDSR[39]41M9385G33.920.9195
      SSEN15M3436G33.920.9204
    • Table  1

      The average results of PSNR/SSIM with scale factor 2×,3× and 4× on datasets Set5,Set14,BSD100,Urban100 and Manga109

        1/3
    • Table  2

      The results of cross-level and feature enhancement module and pooling attention dense block with scale factor 4× on Set5

        2/3
    • Table  3

      Model size and MAC comparison on Set14 (2×), "MAC" denotes the number of multiply-accumulate operations

        3/3