-
摘要
S11639线阵传感器常被用于需要紫外测量的微型光谱仪中。但当S11639曝光量较大时,会出现光谱响应的非线性,从而影响微型光谱仪的动态范围,因此必须进行非线性校正。利用卤钨灯与氘灯测量微型光谱仪的光电响应特性曲线,找出S11639的曝光量与A/D转换输出的线性部分,对数据进行直线拟合,获得S11639在线性范围内的系数。在此基础上,外推得到其在非线性范围内的理论值,求出理论值与实际测量值的差异,利用最小二乘法进行多项式拟合,实现S11639线阵传感器的非线性校正。同时,对比实验结果,分析实验数据的误差成因,为更好地利用基于S11639微型光谱仪的全动态范围光电检测提供实验依据。
Abstract
Linear array sensor S11639 is often used in mini-spectrometer for UV measurement. However, when the exposure volume of S11639 is relatively bigger, the non-linearity of the spectral response will appear. This nonlinear effect will affect the dynamic range of the mini-spectrometer, and therefore, nonlinear correction must be carried out. Photoelectric response of S11639 is measured with halogen tungsten lamp and deuterium lamp to find out the linear part between the exposure and the A/D conversion output, and straight line fitting of the data is made to obtain the factors of S11639 in the linear range. Based on it, the theoretical value in nonlinear range is got by extrapolation, and the difference between the theoretical value and the actual measurement value was calculated. The nonlinear correction of S11639 is realized by polynomial fitting with the least square method. At the same time, compared with the experimental results, the error causes of the experimental data are analyzed, and the experiment is provided for better utilization of mini-spectrometer based on S11639 for photoelectric detection in the full dynamic range.
-
Key words:
- mini-spectrometer /
- spectral response /
- nonlinearity correction /
- dynamic range /
- polynomial fitting
-
Overview
Abstract: S11639 is often used in mini-spectrometer for UV measurement. Ideally, each pixel of S11639, in the whole dynamic range, has good linearity between the amount of incident light and signal charge produced by photoelectric conversion. However, when the exposure of S11639 is bigger, the nonlinearity of S11639 photoelectric response will appear. The nonlinearity of S11639 is related to its structure, because sharing and diffusion of the pixel potential wells occur in the photosensitive area, and the charge interaction enhances more with the increase of the exposure, and even leads to charge overflow. So the more the exposure, the worse the linearity of S11639. The nonlinearity of the S11639 photoelectric response affects the dynamic range of the spectrometer. S11639 is applied in mini-spectrometer which has its own light dispersion system. Halogen tungsten lamp and deuterium lamp are compensated to light from the ultraviolet to the near infrared range of 215 nm~2500 nm. The light is injected through the optical fiber to spectrometer with this light source. The composite light passing asymmetric C-T optical system is decomposed into monochromatic light which is shined on the surface of S11639. The signal is amplified linearly and converted by A/D converter, and the output of A/D conversion is a function of the exposure. Photoelectric response of S11639 is measured to find out the relations between the exposure and the A/D conversion output in the multi wavelength positions of S11639. The conclusion is described below: If the A/D initial output values are the same in different wavelength positions by adjusting the light intensity, the integral time is changed at the same step, and the changes of A/D output value are still the same, so only a photoelectric response curve is measured at one wavelength position, which is suitable for other wavelengths. By changing the integration time of the spectrometer at one wavelength position, the exposure of S11639 is changed, and the value of the A/D conversion is obtained. Straight line fitting of the data is made to obtain the factors of S11639 in the linear range of one wavelength position. Extrapolating from the linear part will reach the theoretical values in nonlinear range, and we can calculate the differences between the actual measurement values and the theoretical values. The polynomial fitting with least squares method realizes the nonlinear correction of S11639 at one wavelength position. Since the coefficients of the linear fitting are the same at different wavelengths, they can be applied to nonlinear correction at other wavelengths. At the same time, compared with the experimental results, the error causes of the experimental data are analyzed, and the experiment is provided for better utilization of mini-spectrometer based on S11639 for photoelectric detection in the full dynamic range.
-
-
表 1 S11639的A/D转换值.
Table 1. A/D converter data of S11639.
积分时间t/ms 波长/nm 256.690 263.551 759.842 807.5 0.5 850 878 855 858 5.0 1473 1492 1466 1478 10.0 2157 2210 2138 2162 20.0 3525 3530 3541 3552 30.0 4852 4871 4906 4881 40.0 6250 6288 6248 6283 50.0 7521 7648 7543 7587 100.0 14100 14273 14358 14440 200.0 27169 27432 27597 27787 300.0 40107 40497 41030 40987 350.0 46158 46648 47616 47323 400.0 51600 51666 51620 51111 450.0 56167 56605 56595 56312 500.0 62618 63159 62597 62819 表 2 759.842 nm处A/D的理论值与实际差值.
Table 2. A/D differences between theoretical value and actual value at 759.842 nm.
积分时间t/ms 理论值 实际值 两者差 百分误差/% 0.5 920 855 65 7.09 5.0 1522 1466 56 3.70 10.0 2191 2138 53 2.43 20.0 3529 3541 -11 -0.33 30.0 4867 4906 -38 -0.79 40.0 6205 6248 -42 -0.68 50.0 7543 7543 0 0.00 100.0 14233 14358 -124 -0.88 200.0 27613 27597 16 0.06 300.0 40993 41030 -36 0.09 350.0 47683 47616 67 0.14 400.0 54373 51620 2753 5.06 450.0 61063 56595 4468 7.32 500.0 67753 62597 5156 7.61 表 3 256.690 nm处A/D的理论值与实际差值.
Table 3. A/D differences between theoretical value and actual value at 256.690 nm.
积分时间t/ms 理论值 实际值 修正程度值 修正后的值 百分误差/% 0.5 1009 850 3 853 -15.47 5.0 1594 1473 47 1520 -4.63 10.0 2244 2157 73 2230 -0.63 20.0 3544 3525 72 3597 1.47 30.0 4845 4852 28 4880 0.72 40.0 6146 6250 -37 6212 1.08 50.0 7447 7521 -98 7423 -0.32 100.0 13950 14100 -173 13927 -0.16 200.0 26956 27169 151 27320 1.35 300.0 39962 40107 -434 39673 -0.72 350.0 46465 46158 333 46491 0.06 400.0 52968 51600 2265 53865 1.69 450.0 59471 56167 4378 60545 1.80 500.0 65974 62618 5147 67765 2.72 -
参考文献
[1] 苏小会, 陈飞, 徐淑萍, 等.基于光谱分析的便携式烟气分析仪[J].仪表技术与传感器, 2012(11): 71–74. doi: 10.3969/j.issn.1002-1841.2012.11.024
Su Xiaohui, Chen Fei, Xu Shuping, et al. Portable flue gas analyzer based on spectrum[J]. Instrument Technique and Sensor, 2012(11): 71–74. doi: 10.3969/j.issn.1002-1841.2012.11.024
[2] 樊书祥, 黄文倩, 张保华, 等.便携式苹果糖度光谱检测仪的设计与试验[J].红外与激光工程, 2014, 43(增刊1): 219–224. http://d.wanfangdata.com.cn/Periodical_hwyjggc2014z1037.aspx
Fan Shuxiang, Huang Wenqian, Zhang Baohua, et al. Design and experiment on portable apple soluble solids content spectrometer[J]. Infrared and Laser Engineering, 2014, 43(S1): 219–224. http://d.wanfangdata.com.cn/Periodical_hwyjggc2014z1037.aspx
[3] 韩孝贞, 温志渝, 谢瑛珂, 等.多参数水质检测仪控制与信号处理系统软件设计[J].仪表技术与传感器, 2014(8): 20–22, 65. http://www.cqvip.com/QK/94978X/201408/662233314.html
Han Xiaozhen, Wen Zhiyu, Xie Yingke, et al. Software design of control and signal processing system for multi-parameter water quality detecting instrument[J]. Instrument Technique and Sensor, 2014(8): 20–22, 65. http://www.cqvip.com/QK/94978X/201408/662233314.html
[4] 张倩, 张学典, 常敏, 等.一种用于LED特性检测的实验仪器的研究[J].光学仪器, 2013, 35(1): 84–88. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxyq201301017&dbname=CJFD&dbcode=CJFQ
Zhang Qian, Zhang Xuedian, Chang Min, et al. A research of laboratory instrument for LED property measurement[J]. Optical Instruments, 2013, 35(1): 84–88. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxyq201301017&dbname=CJFD&dbcode=CJFQ
[5] 曾甜玲, 温志渝, 温中泉, 等.基于紫外光谱分析的水质监测技术研究进展[J].光谱学与光谱分析, 2013, 33(4): 1098–1103. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201104047
Zeng Tianling, Wen Zhiyu, Wen Zhongquan, et al. Research progressin water quality monitoring technology based on ultraviolet spectrum analysis[J]. Spectroscopy and Spectral Analysis, 2013, 33(4): 1098–1103. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201104047
[6] 杜晨光, 孙利群, 丁志田.利用晕苯增强CCD紫外响应的实验研究[J].光学技术, 2010, 36(5): 753–757. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjs201005025
Du Chenguang, Sun Liqun, Ding Zhitian. Experiment study of enhancing CCD ultraviolet response using coronene[J]. Optical Technique, 2010, 36(5): 753–757. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjs201005025
[7] 张大伟, 田鑫, 黄元申, 等. CCD紫外敏感Lumogen薄膜制备与光谱表征[J].光谱学与光谱分析, 2010, 30(5): 1171–1174. http://manu13.magtech.com.cn/gpx/CN/abstract/abstract3578.shtml
Zhang Dawei, Tian Xin, Huang Yuanshen, et al. Preparation and spectral characterization of lumogen coatings for UV-responsive CCD image sensors[J]. Spectroscopy and Spectral Analysis, 2010, 30(5): 1171–1174. http://manu13.magtech.com.cn/gpx/CN/abstract/abstract3578.shtml
[8] 童建平, 董少波, 杨浩, 等.基于S11639的紫外-可见光谱仪的设计[J].光学仪器, 2015, 37(3): 272–277. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxyq201503018
Tong Jianping, Dong Shaobo, Yang Hao, et al. The design of UV–VIS spectrometer based on S11639[J]. Optical Instruments, 2015, 37(3): 272–277. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxyq201503018
[9] 谢旭东, 陈波, 刘华, 等. CCD系统线性动态范围的标定[J].强激光与粒子束, 2000, 12(增刊1): 182–184. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qjgylzs2000Z2018
Xie Xudong, Chen Bo, Liu Hua, et al. Calibration of linear dynamic range for CCD system[J]. High Power Laser And Particle Beams, 2000, 12(S1): 182–184. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qjgylzs2000Z2018
[10] 王淑青, 段海峰, 杨泽平, 等.双缝衍射用CCD响应特性标定的模拟研究[J].光电工程, 2001, 28(4): 19–21. http://www.cqvip.com/qk/90982A/200104/5425002.html
Wang Shuqing, Duan Haifeng, Yang Zeping, et al. Simulation research for double-slit diffraction application to CCD response features scaling[J]. Opto-Electronic Engineering, 2001, 28(4): 19–21. http://www.cqvip.com/qk/90982A/200104/5425002.html
[11] 林晓钢, 顾乃庭, 杨泽平.小孔夫琅和费衍射法标定CCD光电响应特性[J].光学精密工程, 2008, 16(3): 410–414. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjmgc200803007
Lin Xiaogang, Gu Naiting, Yang Zeping. Calibration of CCD photoelectric characteristics by pinhole Fraunhofer diffraction method[J]. Optics and Precision Engineering, 2008, 16(3): 410–414. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjmgc200803007
[12] 赵友全, 江磊, 何峰, 等.线阵CCD光电响应非线性特性测定与分析[J].光电工程, 2015, 42(7): 19–23. http://doi.wanfangdata.com.cn/10.3969/j.issn.1003-501X.2015.07.004
Zhao Youquan, Jiang Lei, He Feng, et al. Measurement and analysis of linear CCD nonlinear optical response characteristics[J]. Opto-Electronic Engineering, 2015, 42(7): 19–23. http://doi.wanfangdata.com.cn/10.3969/j.issn.1003-501X.2015.07.004
[13] 甘振华, 杜民, 高跃明, 等.基于LED的CCD光强响应特性测定[J].中国测试, 2016, 42(12): 121–125. doi: 10.11857/j.issn.1674-5124.2016.12.025
Gan Zhenhua, Du Min, Gao Yueming, et al. Measurement of CCD light intensity response characteristics based on LED[J]. China Measument & Test, 2016, 42(12): 121–125. doi: 10.11857/j.issn.1674-5124.2016.12.025
[14] 张震, 程湘爱, 姜宗福.强光致CCD过饱和效应机理分析[J].强激光与粒子束, 2010, 22(2): 236–237. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=qjgy201002004&dbname=CJFD&dbcode=CJFQ
Zhang Zhen, Cheng Xiang' ai, Jiang Zongfu. Mechanism analysis of CCD excessive saturation effect induced by intense light[J]. High Power Laser And Particle Beams, 2010, 22(2): 236–237. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=qjgy201002004&dbname=CJFD&dbcode=CJFQ
[15] 郝向南, 聂劲松, 李化. CCD强光饱和效应的温度因素分析[J].光电工程, 2011, 38(7): 54–58. http://www.cqvip.com/QK/90982A/201107/38542414.html
Hao Xiangnan, Nie Jingsong, Li Hua. Temperature impact on saturation effect of CCD induced by highlight[J]. Opto-Electronic Engineering, 2011, 38(7): 54–58. http://www.cqvip.com/QK/90982A/201107/38542414.html
[16] 周建康, 沈为民, 唐敏学. CCD测量动态范围的扩展技术[J].光电工程, 2006, 33(10): 96–100, 114. doi: 10.3969/j.issn.1003-501X.2006.10.018
Zhou Jiankang, Shen Weimin, Tang Minxue. Extended dynam-ic-range techniques of CCD measurements[J]. Opto-Electronic Engineering, 2006, 33(10): 96–100, 114. doi: 10.3969/j.issn.1003-501X.2006.10.018
[17] 雷仁方, 王晓强, 杨洪, 等. CCD纵向溢出漏结构工艺仿真与实现[J].半导体光电, 2013, 34(5): 775–777. http://www.cqvip.com/QK/91994X/201305/47881977.html
Lei Renfang, Wang Xiaoqiang, Yang Hong, et al. Simulation and fabrication of vertical spillover drain structure of CCD[J]. Semiconductor Optoelectronics, 2013, 34(5): 775–777. http://www.cqvip.com/QK/91994X/201305/47881977.html
-
访问统计