-
摘要:
热学超材料是超材料家族的新成员,从一开始就备受瞩目,尤其近年来得到迅猛发展。本文以热学超材料关键技术为主线,着眼于坐标变换的基本理论和先进超材料的新奇性质,综述了近年来热学超材料的研究进展,重点关注其在热隐身、热防护、热管理和热信息等方面的应用前景。基于热学超材料的研究现状和发展趋势,进行了系统性的分类梳理,分析和归纳了近年来相关研究的内容与特色,给出了未来热学超材料在隐身、热管理、信息等领域的研究展望。
Abstract:As a new member of the metamaterial family, thermal metamaterial has gained much attention from the very beginning, and has been intensively investigated in recent years. Based on the key technology of thermal metamaterials, the basic theory of coordinate transformation as well as the novel properties of thermal metamaterials is introduced, and the recent progresses of thermal metamaterials, such as thermal cloaking/stealth, thermal protection, thermal management, thermal Information and other aspects of applications have also been reviewed in this paper. Based on the research status and development trend of thermal metamaterials, we systematically classify and sort out the contents and characteristics of relevant research in recent years, and make some prospects about the future applications of thermal metamaterials in the fields of cloaking, thermal management, information and so on.
-
Key words:
- thermal metamaterial /
- thermal cloaking /
- thermal protection /
- thermal management /
- thermal information
-
Abstract:Metamaterials, with artificially engineered periodic structure, has attracted a great deal of research attention, for the ability of manipulating the path of propagation of light or electromagnetic wave, sound or acoustic / elastic wave, heat or thermal wave and the possibility of cloaking objects from a certain incoming physical radiation, which has brought the invisibility or stealth, a tantalizing concept for mankind over several centuries in the science fiction to a technological reality. As a relative new member of the metamaterials family, thermal metamaterial has also gained much attention from the very beginning, and has been intensively investigated in recent years, for the promising ability of controlling the conduction of heat or the distribution of temperature. Thermal metamaterials and their applications in thermal management are significant in the design of electronic devices and systems, such as supercomputer, solid-state laser and solid-state lighting, high power microwave devices, thermoelectric energy harvesters and thermal imagers, where the thermal design plays a key role in performance and device reliability.
In this review, we first make a general introduction and brief summary of the main progresses in metamaterials, especially in the area of optics and electromagnetics. Then the basic theory of coordinate transformation as well as the novel phenomenon of cloaking in metamaterials has been introduced, which is the key technology and original demonstration of all kinds of metamaterials. As a matter of fact, transformation optics has also made the hitherto inconceivable advancements in the field of thermodynamics possible with the remarkable assistance of metamaterials. We mainly focus on the review of the brief advances, recent progresses and trend of development in the field of thermal metamaterials, both of theoretical simulation as well as experimental results. We have amply narrated the design, models, approaches, results and behaviors of thermal metamaterials, and their applications in heat flux manipulation, thermal cloaking or stealth, thermal mirage, thermal protection, thermal management, thermal Information and many other aspects in this paper. Among these reported progresses, thermal cloaking, which manipulates the heat flux in such a way that it can neither enter into the cloaked region nor be distorted outside, is a particularly important subject in studying the thermal metamaterials due to its potential multidimensional applications, and sort out to be transformation-based cloaking (with inhomogeneous and anisotropic parameters), three dimensional cloaking (with a spherical shell structure), irregular-shaped cloaking (theoretical simulation), ultra-thin cloaking, active cloaking (controlled by external electric field), time-dependent cloaking, multi-physical cloaking (cloaking in both heat and current) etc. Finally, based on the research status and development trend of thermal metamaterials, we have systematically summarized, classified and compared the contents and characteristics of relevant research in recent years, both in China and abroad, and provide an outlook on the future directions as well as applications of thermal metamaterials in the fascinating fields of cloaking, thermal management, information and so on. This review is helpful for understanding and further developing thermal metamaterials in applicable concepts and practical techniques for a variety of different thermal devices and systems, and to pave a way for the new avenues that leads to new future technologies.
-
图 1 一些主要超材料结构示意图[3].
图 3 坐标变换原理和隐身斗篷示意图[5].
图 4 坐标变换与超材料在力、热、光、电、磁各领域的应用[6].
图 5 电磁/光学隐身斗篷原理图和电磁场分布[16].
图 6 电阻(热阻)方格及实现隐身效果的坐标变换示意图[20].
图 7 热流在均匀和扭曲铜片中传输路径[5].
图 8 热隐身斗篷、热收集器、热反转器示意图和温度分布[22].
图 9 扇形单元实现热聚焦,均匀加热,热收集示意图和温度分布图[24].
图 10 外界温度变化条件下斗篷热隐身与热收集的相互转化[25].
图 11 热隐身斗篷结构和温度分布图(理论模拟和实验结果)[20].
图 12 平面、多层、二维双层、三维双层结构热隐身斗篷和温度分布图[28].
图 13 不规则结构热隐身斗篷的温度分布图(理论模拟)[32].
图 14 极坐标下的散射振幅分布和热隐身披风的温度和热流分布图[33].
图 15 热隐身和热幻象原理示意图和温度分布图[34].
图 16 活性热隐身斗篷结构示意图[35].
图 17 热隐身斗篷的温度分布曲线随时间变化的模拟计算结果[36].
图 19 复合场热隐身斗篷的电场和温度分布图[39].
图 20 不同外界温度下的热防护实验结果[43].
图 22 化学气相沉积制备的石墨烯[44].
图 24 热二极管原理示意图和温度分布图[54].
图 25 热三极管结构示意图和热流随控制温度变化曲线[55].
图 26 热存储器结构示意图和热读写曲线[59].
表 1 热学超材料研究主要进展
功能 工作内容/细节 单位 文献 热流控制 热隐身,热收集,热反转效果
胶乳橡胶和有机硅弹性体结构哈佛大学
Sato小组[22] 热隐身,热收集,热反转效果
RO4350B和FR-4的弹性体结构美国丰田研究中心
E. M. Dede等[23] 热聚焦,均匀加热,收集功能
Cu和PDMS的扇形单元结构新加坡国立大学
李保文、仇成伟小组[24] 热隐身和热收集功能的智能转化
均匀各向同性材料及记忆合金结构复旦大学
黄吉平小组[25] SiGe和Ge纳米颗粒的“热学晶体”实现23%热流调控(理论模拟) 麻省理工学院
Martin Maldovan[26] 热隐身 实验上实现热隐身斗篷
隐身区半径2.5 cm,斗篷厚2.5 cm卡尔斯鲁尔工业大学
Wegner小组[20] 三维球体隐身斗篷
隐身区半径0.5 cm,斗篷厚100 μm南洋理工大学
张伯乐小组[29] 八面体结构隐身斗篷(理论模拟) 云南大学
黄铭小组[30] 不规则结构隐身斗篷设计
(理论模拟)哈尔滨工业大学
王友善小组[31] 超薄热隐身披风,通过抑制隐身区域的散射实现热隐身效果 阿卜杜拉国王科技大学
M. Farhat[33] 热幻象、热伪装功能
热隐身同时控制热流制造虚拟幻象新加坡国立大学
李保文、仇成伟小组[34] 活性热隐身斗篷
可通过外加电压实现斗篷开启关闭南洋理工大学
张伯乐小组[35] 时间依存热隐身斗篷(理论模拟)
斗篷功能随时间转化瓦伦西亚理工大学
C. Garcia-Meca[36] 复合场(电、热)隐身斗篷
(理论模拟)复旦大学
黄吉平小组[37] 双功能材料坐标变换法
电场隐身,热收集斗篷(理论模拟)萨莫奈大学、哈佛大学
Sato小组[38] 实验上实现复合场(电、热)隐身
规则小孔中注入PDMA的硅片结构浙江大学
何赛灵小组[39] 复合场(电、热)收集器
铝和ABS的扇形结构清华大学
J. Zhou小组[40] 复合场(电、热)隐身探测器
不锈钢和钨的复合结构新加坡国立大学
李保文、仇成伟小组[41] 热防护 无耗能实现恒温区温度相对稳定
环境温度变化30℃下,恒温区仅变化不到2℃复旦大学
黄吉平小组[43] 热管理 Cu基底超顺排碳纳米管阵列制备
大尺寸(mm级)石墨烯单晶制备
碳纳米管/石墨烯超结构材料热导率>400 W/(m•K)
系统封装结构界面热阻<7 mm2•K/W国防科技大学
张学骜小组
南昌大学
王立小组[44-50] 热信息 首个固体热整流器(效率3%~7%)
碳纳米管和氮化硼纳米管加州大学伯克利分校
Zettl小组[51] 氧化物材料热二极管(效率100%) 早稻田大学、筑波大学
D. Sawaki等[52] 热学坐标变换实现热二极管
铜和聚苯乙烯材料复旦大学
黄吉平小组[54] 实验上实现热三极管
利用负微分热阻效应新加坡国立大学
李保文小组[55] 将热三极管推广到量子领域
(理论模拟)普瓦捷大学(法国)
K. Joulain等[56] 热学逻辑门器件(理论模拟)
热三极管按照不同的方式组合新加坡国立大学
李保文小组[57] 提出热存储器模型(理论模拟)
实验上实现单晶VO2的固态存储器新加坡国立大学
李保文小组[58, 59] 纳米热机械存储器
温度信号实现存储、读取、恢复内布拉斯加大学林肯分校
S.Ndao等[60] -
[1] 于相龙, 周济.智能超材料研究与进展[J].材料工程, 2016, 44(7): 119-128. doi: 10.11868/j.issn.1001-4381.2016.07.020 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=clgc201607021&dbname=CJFD&dbcode=CJFQ
Yu Xianglong, Zhou Ji. Research advance in smart metamaterials[J]. Journal of Materials Engineering, 2016, 44(7): 119-128. doi: 10.11868/j.issn.1001-4381.2016.07.020 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=clgc201607021&dbname=CJFD&dbcode=CJFQ
[2] 徐象繁, 周俊, 杨诺, 等.人工微结构材料与热的调控[J].中国科学:技术科学, 2015, 45(7): 705-713. https://www.researchgate.net/profile/Yunyun_Li/publication/281998523_Artificial_microstructure_materials_and_heat_flux_manipulation/links/5608bff508aea25fce3b862d.pdf
Xu Xiangfan, Zhou Jun, Yang Nuo, et al. Artificial microstructure materials and heat flux manipulation[J]. Scientia Sinica Technologica, 2015, 45(7): 705-713. https://www.researchgate.net/profile/Yunyun_Li/publication/281998523_Artificial_microstructure_materials_and_heat_flux_manipulation/links/5608bff508aea25fce3b862d.pdf
[3] Soukoulis C M, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials[J]. Nature Photonics, 2011, 5: 523-530. doi: 10.1038/nphoton.2011.154 http://cn.bing.com/academic/profile?id=1f3c089655fd5505cc22bba498f05500&encoded=0&v=paper_preview&mkt=zh-cn
[4] Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Soviet Physics Uspekhi, 1968, 10(4): 509-514. doi: 10.1070/PU1968v010n04ABEH003699 http://cn.bing.com/academic/profile?id=a0ee8059b62490e7bdc6765e4d74c7c9&encoded=0&v=paper_preview&mkt=zh-cn
[5] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780-1782. doi: 10.1126/science.1125907 http://cn.bing.com/academic/profile?id=bc8f84ad0f112bc5e91bc3c77ae4ffac&encoded=0&v=paper_preview&mkt=zh-cn
[6] Wegener M. Metamaterials beyond optics[J]. Science, 2013, 342(6161): 939-940. doi: 10.1126/science.1246545 http://cn.bing.com/academic/profile?id=a66ba1ca793715b015bea7e25774d184&encoded=0&v=paper_preview&mkt=zh-cn
[7] Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075-2084. doi: 10.1109/22.798002 http://cn.bing.com/academic/profile?id=76ce8ee3572d37629f204f3b741b3cce&encoded=0&v=paper_preview&mkt=zh-cn
[8] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77-79. doi: 10.1126/science.1058847 http://cn.bing.com/academic/profile?id=584cf6cf45a1a9c13d661e82508805f4&encoded=0&v=paper_preview&mkt=zh-cn
[9] Parazzoli C G, Greegor R B, Li K, et al. Experimental verification and simulation of negative index of refraction using Snell's law[J]. Physical Review Letters, 2003, 90(10): 107401. doi: 10.1103/PhysRevLett.90.107401 http://cn.bing.com/academic/profile?id=f9ca9e4f3afb78b8d772de9d1b041a80&encoded=0&v=paper_preview&mkt=zh-cn
[10] Liu R, Ji C, Mock J J, et al. Broadband ground-plane cloak[J]. Science, 2009, 323(5912): 366-369. doi: 10.1126/science.1166949 http://cn.bing.com/academic/profile?id=a1adaf6c0f4a2dd3918f3b67fe5fd9c7&encoded=0&v=paper_preview&mkt=zh-cn
[11] Ergin T, Stenger N, Brenner P, et al. Three-dimensional invisibility cloak at optical wavelengths[J]. Science, 2010, 328(5976): 337-339. doi: 10.1126/science.1186351 http://cn.bing.com/academic/profile?id=937382c57c81717c05a064f65c3a8543&encoded=0&v=paper_preview&mkt=zh-cn
[12] Ma Huifeng, Cui Tiejun. Three-dimensional broadband ground-plane cloak made of metamaterials[J]. Nature Communications, 2010, 1: 21. http://cn.bing.com/academic/profile?id=87d225fe6f00181ca15be175301d5162&encoded=0&v=paper_preview&mkt=zh-cn
[13] Chen Xianzhong, Luo Yu, Zhang Jingjing, et al. Macroscopic invisibility cloaking of visible light[J]. Nature Communications, 2011, 2: 176. doi: 10.1038/ncomms1176 http://cn.bing.com/academic/profile?id=636b4e685e9d7f1c2e12bf81bc0bd2d7&encoded=0&v=paper_preview&mkt=zh-cn
[14] Gharghi M, Gladden C, Zentgraf T, et al. A carpet cloak for visible light[J]. Nano Letters, 2011, 11(7): 2825-2828. doi: 10.1021/nl201189z http://cn.bing.com/academic/profile?id=b284bdecc44b360879ae545f69f9db46&encoded=0&v=paper_preview&mkt=zh-cn
[15] Kocaman S, Aras M S, Hsieh P, et al. Zero phase delay in negative-refractive-index photonic crystal superlattices[J]. Nature Photonics, 2011, 5(8): 499-505. doi: 10.1038/nphoton.2011.129 http://cn.bing.com/academic/profile?id=8faf3ba5f31b295eb7d65a930cc09875&encoded=0&v=paper_preview&mkt=zh-cn
[16] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980. doi: 10.1126/science.1133628 http://cn.bing.com/academic/profile?id=8691ae2356f7b05dd4ea2a6eb35da07a&encoded=0&v=paper_preview&mkt=zh-cn
[17] Shen Sheng, Henry A, Tong J, et al. Polyethylene nanofibres with very high thermal conductivities[J]. Nature Nanotechnology, 2010, 5(4): 251-255. doi: 10.1038/nnano.2010.27 http://cn.bing.com/academic/profile?id=ebceb2ba3d8d8462b217e355754ff6a7&encoded=0&v=paper_preview&mkt=zh-cn
[18] Fan C Z, Gao Y, Huang J P. Shaped graded materials with an apparent negative thermal conductivity[J]. Applied Physics Letters, 2008, 92(25): 251907. doi: 10.1063/1.2951600 http://cn.bing.com/academic/profile?id=ed72ee6f9c05ef74369ab6ab124d4123&encoded=0&v=paper_preview&mkt=zh-cn
[19] Guenneau S, Amra C, Veynante D. Transformation thermodynamics: cloaking and concentrating heat flux[J]. Optics Express, 2012, 20(7): 8207-8218. doi: 10.1364/OE.20.008207 http://cn.bing.com/academic/profile?id=d0abbb4d1120a3410f4649b7d2d69f83&encoded=0&v=paper_preview&mkt=zh-cn
[20] Schittny R, Kadic M, Guenneau S, et al. Experiments on transformation thermodynamics: molding the flow of heat[J]. Physical Review Letters, 2013, 110(19): 195901. doi: 10.1103/PhysRevLett.110.195901 http://cn.bing.com/academic/profile?id=21ed243974199768e117bd955f7e853d&encoded=0&v=paper_preview&mkt=zh-cn
[21] Ma Y, Lan L, Jiang W, et al. A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity[J]. NPG Asia Materials, 2013, 5: e73. doi: 10.1038/am.2013.60 http://cn.bing.com/academic/profile?id=e1904e5cb4eeb24aa0f17a651bb9ee4c&encoded=0&v=paper_preview&mkt=zh-cn
[22] Narayana S, Sato Y. Heat flux manipulation with engineered thermal materials[J]. Physical Review Letters, 2012, 108(21): 214303. doi: 10.1103/PhysRevLett.108.214303 http://cn.bing.com/academic/profile?id=27af0fbb43128ac28b977ddc1f905e77&encoded=0&v=paper_preview&mkt=zh-cn
[23] Dede E M, Nomura T, Schmalenberg P, et al. Heat flux cloaking, focusing, and reversal in ultra-thin composites considering conduction-convection effects[J]. Applied Physics Letters, 2013, 103(6): 063501. doi: 10.1063/1.4816775 https://www.researchgate.net/publication/257955856_Heat_flux_cloaking_focusing_and_reversal_in_ultra-thin_composites_considering_conduction-convection_effects
[24] Han Tiancheng, Bai Xue, Liu Dan, et al. Manipulating steady heat conduction by sensu-shaped thermal metamaterials[J]. Scientific Reports, 2015, 5: 10242. doi: 10.1038/srep10242 http://cn.bing.com/academic/profile?id=cffb15a80991b5517d098c47b45bc266&encoded=0&v=paper_preview&mkt=zh-cn
[25] Shen X, Li Y, Jiang C, et al. Thermal cloak-concentrator[J]. Applied Physics Letters, 2016, 109(3): 031907. doi: 10.1063/1.4959251 https://www.researchgate.net/publication/305523164_Thermal_cloak-concentrator
[26] Maldovan M. Narrow low-frequency spectrum and heat management by thermocrystals[J]. Physical Review Letters, 2013, 110(2): 025902. doi: 10.1103/PhysRevLett.110.025902 http://cn.bing.com/academic/profile?id=10ae537a86cb0e4c6c4aa562bdb54703&encoded=0&v=paper_preview&mkt=zh-cn
[27] Anufriev R, Nomura M. Thermal conductance boost in phononic crystal nanostructures[J]. Physical Review B, 2015, 91(24): 245417. doi: 10.1103/PhysRevB.91.245417 https://www.researchgate.net/profile/Masahiro_Nomura2/publication/280317240_Thermal_conductance_boost_in_phononic_crystal_nanostructures/links/55b60e8008aed621de030945.pdf?inViewer=true&disableCoverPage=true&origin=publication_detail
[28] Han Tiancheng, Qiu Chengwei. Transformation Laplacian metamaterials: recent advances in manipulating thermal and dc fields[J]. Journal of Optics, 2016, 18(4): 044003. doi: 10.1088/2040-8978/18/4/044003 http://cn.bing.com/academic/profile?id=bb70b0ab1d1104c67f85af6920c83183&encoded=0&v=paper_preview&mkt=zh-cn
[29] Xu Hongyi, Shi Xihang, Gao Fei, et al. Ultrathin three-dimensional thermal cloak[J]. Physical Review Letters, 2014, 112(5): 054301. doi: 10.1103/PhysRevLett.112.054301 http://cn.bing.com/academic/profile?id=39bf8d51d783a826143b05746b397c10&encoded=0&v=paper_preview&mkt=zh-cn
[30] Li Tinghua, Zhu Donglai, Mao Fuchun, et al. Design of diamond-shaped transient thermal cloaks with homogeneous isotropic materials[J]. Frontiers of Physics, 2016, 11: 110503. doi: 10.1007/s11467-016-0575-4 http://cn.bing.com/academic/profile?id=1fdf381b39ec42311f011127cde55e79&encoded=0&v=paper_preview&mkt=zh-cn
[31] Yuan Xuebo, Lin Guochang, Wang Youshan. Design of layered structure for thermal cloak with complex shape[J]. Modern Physics Letters B, 2016, 30(20): 1650256. doi: 10.1142/S0217984916502560 http://cn.bing.com/academic/profile?id=90b8eace03be1ce6e41804cb973c7b79&encoded=0&v=paper_preview&mkt=zh-cn
[32] Guenneau S, Petiteau D, Zerrad M, et al. Transformed fourier and fick equations for the control of heat and mass diffusion[J]. AIP Advances, 2015, 5(5): 053404. doi: 10.1063/1.4917492 http://cn.bing.com/academic/profile?id=6801f70457f0da723faec04585ab76af&encoded=0&v=paper_preview&mkt=zh-cn
[33] Farhat M, Chen P Y, Bagci H, et al. Thermal invisibility based on scattering cancellation and mantle cloaking[J]. Scientific Reports, 2015, 5: 9876. doi: 10.1038/srep09876 http://cn.bing.com/academic/profile?id=93ce3b597b34e9f4cf2e98412024e1c8&encoded=0&v=paper_preview&mkt=zh-cn
[34] Han Tiancheng, Bai Xue, Thong J T L, et al. Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials[J]. Advanced Materials, 2014, 26(11): 1731-1734. doi: 10.1002/adma.201304448 http://cn.bing.com/academic/profile?id=b8c44c4f88d9b3fb3d33bdbe39192967&encoded=0&v=paper_preview&mkt=zh-cn
[35] Nguyen D M, Xu Hongyi, Zhang Youming, et al. Active thermal cloak[J]. Applied Physics Letters, 2015, 107(12): 121901. doi: 10.1063/1.4930989 http://cn.bing.com/academic/profile?id=b0220920da5511f74ba255052cfc9655&encoded=0&v=paper_preview&mkt=zh-cn
[36] García-Meca C, Barceló C. Dynamically tunable transformation thermodynamics[J]. Journal of Optics, 2016, 18(4): 044026. doi: 10.1088/2040-8978/18/4/044026 http://cn.bing.com/academic/profile?id=8655fa543a15d9f1ff5ff0e7603d9b56&encoded=0&v=paper_preview&mkt=zh-cn
[37] Li J Y, Gao Y, Huang J P. A bifunctional cloak using transformation media[J]. Journal of Applied Physics, 2010, 108(7): 074504. doi: 10.1063/1.3490226 http://cn.bing.com/academic/profile?id=88168ee138022dd55afa4c80bd6a1518&encoded=0&v=paper_preview&mkt=zh-cn
[38] Moccia M, Castaldi G, Savo S, et al. Independent manipulation of heat and electrical current via bifunctional metamaterials[J]. Physical Review X, 2014, 4(2): 021025. doi: 10.1103/PhysRevX.4.021025 http://cn.bing.com/academic/profile?id=2c3ada06397e9ef06f652cf606b3380e&encoded=0&v=paper_preview&mkt=zh-cn
[39] Ma Yungui, Liu Yichao, Raza M, et al. Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously[J]. Physical Review Letters, 2014, 113(20): 205501. doi: 10.1103/PhysRevLett.113.205501 http://www.oalib.com/paper/3491259
[40] Lan Chuwen, Li Bo, Zhou Ji. Simultaneously concentrated electric and thermal fields using fan-shaped structure[J]. Optics Express, 2015, 23(19): 24475-24483. doi: 10.1364/OE.23.024475 http://cn.bing.com/academic/profile?id=d983479486d353b87fd673053497dbb9&encoded=0&v=paper_preview&mkt=zh-cn
[41] Yang Tianzhi, Bai Xue, Gao Dongliang, et al. Invisible sensors: simultaneous sensing and camouflaging in multiphysical fields[J]. Advanced Materials, 2015, 27(47): 7752-7758. doi: 10.1002/adma.201502513 http://cn.bing.com/academic/profile?id=bcd765abd5c7d09ac13e384c59cd513a&encoded=0&v=paper_preview&mkt=zh-cn
[42] Alù A. Thermal cloaks get hot[J]. Physics, 2014, 7: 12. doi: 10.1103/Physics.7.12 http://cn.bing.com/academic/profile?id=8695982307d61a8cf9e154589c802672&encoded=0&v=paper_preview&mkt=zh-cn
[43] Shen Xiangying, Li Ying, Jiang Chaoran, et al. Temperature trapping: energy-free maintenance of constant temperatures as ambient temperature gradients change[J]. Physical Review Letters, 2016, 117(5): 055501. doi: 10.1103/PhysRevLett.117.055501 http://cn.bing.com/academic/profile?id=8820e5fb2a76a5d02a9f2b3dce9c7e35&encoded=0&v=paper_preview&mkt=zh-cn
[44] Wang C, Chen W, Han C, et al. Growth of millimeter-size single crystal graphene on Cu foils by circumfluence chemical vapor deposition[J]. Scientific Reports, 2014, 4: 4537. http://cn.bing.com/academic/profile?id=d5e81488154bbdbd3bab4143f9c6d29a&encoded=0&v=paper_preview&mkt=zh-cn
[45] Zheng Xiaoming, Chen Wei, Wang Guang, et al. The Raman redshift of graphene impacted by gold nanoparticles[J]. AIP Advances, 2015, 5(5): 057133. doi: 10.1063/1.4921316 https://www.researchgate.net/profile/Qin_Shiqiao/publication/277901667_The_Raman_redshift_of_graphene_impacted_by_gold_nanoparticles/links/56a733ae08aeded22e36bb1d.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail
[46] Chen Wei, Qin Shiqiao, Zhang Xueao, et al. Current induced doping in graphene-based transistor with asymmetrical contact barriers[J]. Applied Physics Letters, 2014, 104(8): 083115. doi: 10.1063/1.4867018 https://www.researchgate.net/profile/Qin_Shiqiao/publication/296329803_Current_induced_doping_in_graphene-based_transistor_with_asymmetrical_contact/data/56d44aa908ae2ea08cf8e9d6/2014-CW-APL-Current-induced-doping-in-graphene-based-transistor-with-asymmetrical-contact.pdf
[47] Chen Wei, Qin Shiqiao, Zhang Xueao, et al. Current self-amplification effect of graphene-based transistor in high-field transport[J]. Carbon, 2014, 77: 1090-1094. doi: 10.1016/j.carbon.2014.06.025 http://cn.bing.com/academic/profile?id=85eb818210160ab50aafcd8c13f6fb5a&encoded=0&v=paper_preview&mkt=zh-cn
[48] Chen W, Wang F, Qin S, et al. Observation of complete space-charge-limited transport in metal-oxide-graphene hetero structure[J]. Applied Physics Letters, 2015, 106(2): 023122. doi: 10.1063/1.4906202 https://www.osti.gov/biblio/22399134
[49] Yan Bo, Fang Jingyue, Qin Shiqiao, et al. Experimental study of plasmon in a grating coupled graphene device with a resonant cavity[J]. Applied Physics Letters, 2015, 107(19): 191905. doi: 10.1063/1.4935344 http://cn.bing.com/academic/profile?id=5232e6816ea38ee96945325320d811bd&encoded=0&v=paper_preview&mkt=zh-cn
[50] Chen Wei, Yu Yayun, Zheng Xiaoming, et al. All-carbon based graphene field effect transistor with graphitic electrodes fabricated by e-beam direct writing on PMMA[J]. Scientific Reports, 2015, 5: 12198. doi: 10.1038/srep12198 http://cn.bing.com/academic/profile?id=015f22a883d13d745b8f634700f3724a&encoded=0&v=paper_preview&mkt=zh-cn
[51] Chang C W, Okawa D, Majumdar A, et al. Solid-state thermal rectifier[J]. Science, 2006, 314(5802): 1121-1124. doi: 10.1126/science.1132898 http://cn.bing.com/academic/profile?id=b77e58500c5213d91f333cbe45ddfd3f&encoded=0&v=paper_preview&mkt=zh-cn
[52] Sawaki D, Kobayashi W, Moritomo Y, et al. Thermal rectification in bulk materials with asymmetric shape[J]. Applied Physics Letters, 2011, 98(8): 081915. doi: 10.1063/1.3559615 http://cn.bing.com/academic/profile?id=306fe961ca9d5f9f17f23ae5f52aec56&encoded=0&v=paper_preview&mkt=zh-cn
[53] Tian He, Xie Dan, Yang Yi, et al. A novel solid-state thermal rectifier based on reduced graphene oxide[J]. Scientific Reports, 2012, 2: 523. doi: 10.1038/srep00523 http://cn.bing.com/academic/profile?id=98b686e4bb1a8c3024406731a1a74391&encoded=0&v=paper_preview&mkt=zh-cn
[54] Li Ying, Shen Xiangying, Wu Zuhui, et al. Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes[J]. Physical Review Letters, 2015, 115(19): 195503. doi: 10.1103/PhysRevLett.115.195503 http://cn.bing.com/academic/profile?id=fb8e3da4c05c21f39d532881674355a5&encoded=0&v=paper_preview&mkt=zh-cn
[55] Li Baowen, Wang Lei, Casati G. Negative differential thermal resistance and thermal transistor[J]. Applied Physics Letters, 2006, 88(14): 143501. doi: 10.1063/1.2191730 http://cn.bing.com/academic/profile?id=b8e13e39060a6de163ff0c5e13006f66&encoded=0&v=paper_preview&mkt=zh-cn
[56] Joulain K, Drevillon J, Ezzahri Y, et al. Quantum thermal transistor[J]. Physical Review Letters, 2016, 116(20): 200601. doi: 10.1103/PhysRevLett.116.200601 http://cn.bing.com/academic/profile?id=efca67652d84401753c13048a32ceab8&encoded=0&v=paper_preview&mkt=zh-cn
[57] Wang Lei, Li Baowen. Thermal logic gates: computation with phonons[J]. Physical Review Letters, 2007, 99(17): 177208. doi: 10.1103/PhysRevLett.99.177208 http://cn.bing.com/academic/profile?id=21026e342da5155b47bc210b3afd3714&encoded=0&v=paper_preview&mkt=zh-cn
[58] Wang Lei, Li Baowen. Thermal memory: a storage of phononic information[J]. Physical Review Letters, 2008, 101(26): 267203. doi: 10.1103/PhysRevLett.101.267203 http://cn.bing.com/academic/profile?id=9b248daa06c24e079455248f81393528&encoded=0&v=paper_preview&mkt=zh-cn
[59] Xie Rongguo, Bui C T, Varghese B, et al. An electrically tuned solid-state thermal memory based on metal-insulator transition of single-crystalline VO2 nanobeams[J]. Advanced Functional Materials, 2011, 21(9): 1602-1607. doi: 10.1002/adfm.201002436 http://cn.bing.com/academic/profile?id=f9b1f2c359a690cca8b7386f0c89c813&encoded=0&v=paper_preview&mkt=zh-cn
[60] Elzouka M, Ndao S. Near-field NanoThermoMechanical memory[J]. Applied Physics Letters, 2014, 105(24): 243510. doi: 10.1063/1.4904828 https://www.researchgate.net/profile/Mahmoud_Elzouka/publication/271133738_Near-field_NanoThermoMechanical_memory/links/54c7a1ac0cf22d626a36c0cb.pdf?origin=publication_list
[61] Ito K, Nishikawa K, Iizuka H. Multilevel radiative thermal memory realized by the hysteretic metal-insulator transition of vanadium dioxide[J]. Applied Physics Letters, 2016, 108(5): 053507. doi: 10.1063/1.4941405 http://cn.bing.com/academic/profile?id=30f1b70232229b9d515dddf4c39d25c4&encoded=0&v=paper_preview&mkt=zh-cn