大疆无人机目标红外辐射特性测量及温度反演

陈超帅, 王世勇. 大疆无人机目标红外辐射特性测量及温度反演[J]. 光电工程, 2017, 44(4): 427-434. doi: 10.3969/j.issn.1003-501X.2017.04.007
引用本文: 陈超帅, 王世勇. 大疆无人机目标红外辐射特性测量及温度反演[J]. 光电工程, 2017, 44(4): 427-434. doi: 10.3969/j.issn.1003-501X.2017.04.007
Chaoshuai Chen, Shiyong Wang. Infrared radiation characteristics measurement and temperature retrieval based on DJI unmanned aerial vehicle[J]. Opto-Electronic Engineering, 2017, 44(4): 427-434. doi: 10.3969/j.issn.1003-501X.2017.04.007
Citation: Chaoshuai Chen, Shiyong Wang. Infrared radiation characteristics measurement and temperature retrieval based on DJI unmanned aerial vehicle[J]. Opto-Electronic Engineering, 2017, 44(4): 427-434. doi: 10.3969/j.issn.1003-501X.2017.04.007

大疆无人机目标红外辐射特性测量及温度反演

  • 基金项目:
    国家“十二五”国防预研项目(41101050501);上海市现场物证重点实验室基金资助项目(2011xcwzk04)
详细信息

Infrared radiation characteristics measurement and temperature retrieval based on DJI unmanned aerial vehicle

  • Fund Project:
More Information
  • 随着无人机技术在各个领域崭露头角,无人机目标在红外波段的辐射特性成为人们非常关注的问题。本文首先对中、长波红外探测器进行辐射定标,针对飞行中的无人机目标的辐射特性进行测量,对飞行状态下的无人机目标的温度进行了反演,分别采用了单波段、双波段比色法、基于黑体校正的双波段法进行探测,结合实测数据对上述各种方法进行了分析对比,对测量结果进行了精度分析并给出误差源。结果表明,实验中的无人机中波辐射强度约为0.04 W/sr、长波辐射强度在0.5 W/sr左右,采用基于黑体校正的双波段测量方法能极大提高无人机目标温度反演的精度。反演温度的绝对误差降低至2 K,相对误差仅为0.5%左右。

  • Abstract: With the initial applications of unmanned aerial vehicle technology in various fields, the infrared (IR) radiation characteristics of the UAV become an issue of mutual concern. In this experiment, the radiometric calibration of middle wave and long wave infrared detectors has been done. SR800R 12D_ET extending blackbody made in Israel is used for the radiometric calibration of middle wave and long wave infrared detectors. The quantitative connection between the optical entrance pupil radiation and the output of detector is established, and the responsivity of the infrared detector is obtained. The radiation characteristics of the UAV is measured while flying, and the temperature of UAV target is inverted by using single-band method, dual-band colorimetric method and dual-band method based on black-body calibration.

    Firstly, single-band measurement experiment is performed. According to the experimental principle, the mathematical model is established. The equation of radiance and temperature is obtained. The inversion temperature depends on the equation. If each coefficient in the formula is analyzed, the accuracy of the inversion temperature can be obtained theoretically. Using Monte Carlo method, by constructing random number that matches the coefficient uncertainty in the above formula, is a good idea for temperature retrieval of simulation experiment. In this experiment, Phantom 3 of DJI-Innovation is used to simulate the target. The radiation intensity of target UAV is calculated, the absolute error of temperature retrieval reduces to 11 K, and relative error is just near 4%. This method has a significant error in temperature retrieval.

    Secondly, in order to eliminate the impact of the emissivity, the experiment of dual-band colorimetry was carried out. Compared to single-band measurement experiment, the experimental principle is improved and the mathematical model is modified. The results show that radiation intensity of UAV is about 0.0486W/sr in middle IR wave and 0.6113 W/sr in long IR wave. The absolute error of temperature retrieval is reduced to 4 K, and relative error is just near 2%. Using atmospheric mode to calculate still has a large error.

    At last, dual-band method based on black-body calibration is used to effectively solve the effects of atmospheric transmittance and atmospheric path radiation on infrared radiation characteristics measurement and temperature retrieval. The results show that radiation intensity of UAV is about 0.04 W/sr in middle IR wave and 0.5 W/sr in long IR wave. The absolute error of temperature retrieval reduces to 2 K, and relative error is just near 0.5%. Dual-band method based on black-body calibration can improve the precision of UAV temperature inversion extremely in contrast with the previous method.

  • 加载中
  • 图 1  实验室辐射亮度定标装置.

    Figure 1.  Radiance calibration device in lab.

    图 2  中波红外探测器辐射亮度定标结果.

    Figure 2.  Calibration result of middle wave IR detector.

    图 3  长波红外探测器辐射亮度定标结果.

    Figure 3.  Calibration result of long wave IR detector.

    图 4  中波红外大气透过率.

    Figure 4.  Atmospheric transmittance of MWIR.

    图 5  中波红外路径辐亮度.

    Figure 5.  Path radiance of MWIR.

    图 6  无人机中波红外图像.

    Figure 6.  MWIR image of UAV.

    图 7  无人机长波红外图像.

    Figure 7.  LWIR image of UAV.

    图 8  温度反演的分布图.

    Figure 8.  Distribution of temperature retrieval.

    表 1  实验的大气参数.

    Table 1.  Atmospheric parameters for the experiment.

    Temperature/℃ Humidity/(%) Visibility/km Atmospheric pressure/hPa Altitude/m Longitude Latitude
    31.6 49 12 1008 4 E121°28' N31°17'
    下载: 导出CSV

    表 2  无人机的长波红外辐射温度反演结果.

    Table 2.  LWIR temperature retrieval results of UAV.

    Location Gray value of LW Calculated radiance/(W·sr-1·m-2) Actual temperature/K Calculated temperature/K Absolute error/K Relative error/(%)
    A 11861 19.4204 305.5 316.7 11.2 3.7
    B 11818 19.2739 305.5 316.3 10.7 3.5
    C 11861 19.4204 305.5 316.7 11.2 3.7
    D 11831 19.3182 305.5 316.5 11.0 3.5
    E 11833 19.3250 305.5 316.4 10.9 3.6
    下载: 导出CSV

    表 3  无人机的长波红外辐射特性结果.

    Table 3.  LWIR radiation characteristics result of UAV.

    Gray value of LW Number Radiance of LWIR/(W·sr-1·m-2) Radiation intensity of LWIR/(W·sr-1)
    11797 100 19.2011 0.6240
    11805 86 19.2283 0.5374
    11800 97 19.2113 0.6056
    11810 99 19.2454 0.6192
    11817 107 19.2692 0.6701
    下载: 导出CSV

    表 4  基于传统的双波段温度反演结果.

    Table 4.  Temperature retrieval results based on traditional dual waveband.

    Location Gray value of MW Gray value of LW Calculated radiance of MW/(W·sr-1·m-2) Calculated radiance of LW/(W·sr-1·m-2) Actual temperature/K Calculated temperature/K Absolute error Relative error/(%)
    A 9250 11861 1.6567 19.4205 305.5 301.5 4.0 1.3
    B 9135 11818 1.6260 19.2739 305.5 300.9 4.6 1.5
    C 9222 11861 1.6493 19.4205 305.5 301.2 4.3 1.4
    D 9223 11831 1.6495 19.3182 305.5 301.6 3.9 1.3
    E 9248 11833 1.6562 19.3251 305.5 301.8 3.8 1.2
    下载: 导出CSV

    表 5  无人机的中、长波红外辐射特性结果.

    Table 5.  LWIR and MWIR radiation characteristics results of UAV.

    Gray value of MW Gray value of LW The number
    in MWIR
    The number in LWIR Radiance of
    MW /(W·sr-1·m-2)
    Radiance of
    LW/(W·sr-1·m-2)
    Radiation intensity of MWIR/(W/sr) Radiation intensity of LWIR/(W/sr)
    9002 11797 99 100 1.5904 19.2011 0.0512 0.6240
    9003 11805 86 86 1.5907 19.2283 0.0445 0.5374
    8959 11800 90 97 1.5789 19.2113 0.0462 0.6056
    8902 11810 99 99 1.5637 19.2454 0.0503 0.6192
    8973 11817 99 107 1.5827 19.2692 0.0509 0.6701
    下载: 导出CSV

    表 6  利用黑体计算大气透过率和大气路径辐射亮度实验结果.

    Table 6.  Atmospheric transmittance and path radiance experimental results calculated from black body.

    Blackbody temperature/K Radiance of MW/(W·sr-1·m-2) Radiance of LW/(W·sr-1·m-2) Gray value of MW Gray value of LW
    308 1.6742 17.5531 10071 12226
    323 2.7543 22.6943 13430 13293
    下载: 导出CSV

    表 7  基于黑体校正的双波段温度反演结果

    Table 7.  Dual waveband temperature retrieval results based on black body calibration.

    Location Gray value of MW Gray value of LW Calculated radiance of MW/(W/sr·m2) Calculated radiance of LW/(W/sr·m2) Actual temperature/K Calculated temperature/K Absolute error Relative error/(%)
    A 9250 11861 1.4102 15.7944 305.5 304.1 1.4 0.46
    B 9135 11818 1.3732 15.5872 305.5 303.4 2.1 0.69
    C 9222 11861 1.4012 15.7944 305.5 303.7 1.8 0.59
    D 9223 11831 1.4015 15.6498 305.5 304.3 1.2 0.39
    E 9248 11833 1.4096 15.6595 305.5 304.6 1.1 0.36
    下载: 导出CSV

    表 8  无人机的中、长波红外辐射特性结果.

    Table 8.  LWIR and MWIR radiation characteristics of UAV.

    Gray value of MW Gray value of LW The number in MWIR The number in LWIR Radiance of MW /(W·sr-1·m-2) Radiance of LW/(W·sr-1·m-2) Radiation intensity of MWIR/(W·sr-1) Radiation intensity of LWIR/(W·sr-1)
    9002 11797 99 100 1.3305 15.4860 0.0428 0.5033
    9003 11805 86 86 1.3308 15.5245 0.0372 0.4339
    8959 11800 90 97 1.3166 15.5005 0.0385 0.4887
    8902 11810 99 99 1.2983 15.5486 0.0418 0.5003
    8973 11817 99 107 1.3211 15.5486 0.0425 0.5419
    下载: 导出CSV
  • [1]

    曹立华, 万春明, 张云峰, 等.点目标的红外辐射特性测量方法[J].红外与毫米波学报, 2015, 34(4): 460-464. doi: 10.11972/j.issn.1001-9014.2015.04.014

    Cao Lihua, Wan Chunming, Zhang Yunfeng, et al. Infrared radiation characteristic measure method of point Target[J]. Journal of Infrared and Millimeter Waves, 2015, 34(4): 460-464. doi: 10.11972/j.issn.1001-9014.2015.04.014

    [2]

    徐顶国, 桑建华, 罗明东.背景辐射下的无人机红外辐射特征仿真研究[J].激光与红外, 2013, 43(6): 649-653. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgyhw201306012

    Xu Dingguo, Sang Jianhua, Luo Mingdong. Simulation study on the infrared radiation characteristics of UAV under the background radiation[J]. Laser & Infrared, 2013, 43(6): 649-653. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgyhw201306012

    [3]

    李云红, 张龙, 王延年.红外热像仪外场测温的大气透过率二次标定[J].光学精密工程, 2010, 18(10): 2143-2149. http://www.eope.net/fileup/PDF/20101004.pdf

    Li Yunhong, Zhang Long, Wang Yannian. Second calibration of atmospheric transmission coefficients on temperature measurement of infrared thermal imager in fields[J]. Optics and Precision Engineering, 2010, 18(10): 2143-2149. http://www.eope.net/fileup/PDF/20101004.pdf

    [4]

    杨词银, 张建萍, 曹立华.基于实时标校的目标红外辐射测量新方法[J].红外与毫米波学报, 2011, 30(3): 284-288. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_hwyhmb201103022

    Yang Ciyin, Zhang Jianping, Cao Lihua. Infrared radiation measurement based on real-time correction[J]. Journal of Infrared and Millimeter Waves, 2011, 30(3): 284-288. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_hwyhmb201103022

    [5]

    Teutsch M, Krüger W, Heinze N. Detection and classification of moving objects from UAVs with optical Sensors[J]. Proceedings of SPIE, 2011, 80501: 80501J. https://www.spiedigitallibrary.org/redirect/proceedings/proceeding?doi=10.1117/12.883102

    [6]

    Mahulikar S P, Sonawane H R, Rao G A. Infrared signature studies of aerospace vehicles[J]. Progress in Aerospace Sciences, 2007, 43(7-8): 218-245. doi: 10.1016/j.paerosci.2007.06.002

    [7]

    Bakker E J, Fair M L, Schleijpen H M A. Modeling multispectral imagery data with NIRATAM v3.1 and NPLUME v1.6[J]. Proceedings of SPIE, 1999, 3699: 80-91. doi: 10.1117/12.352936

    [8]

    李宪圣, 任建伟, 张立国, 等.大口径红外光电系统现场辐射定标装置的研制[J].光电子·激光, 2006, 17(2): 175-178.

    Li Xiansheng, Ren Jianwei, Zhang Liguo, et al. Research on a radiometric calibration device for a large aperture infrared opto-electric system on spot[J]. Journal of Optoelectronics·Laser, 2006, 17(2): 175-178.

    [9]

    张立儒.比色和亮度高温计测量精度的分析[J].天津大学学报, 1963, 12(1): 75-81.

    Zhang Liru. Colorimetric and Radiance temperature Pyrometer Measurement Accuracy Analysis[J]. Journal of Tianjin University, 1963, 12(1): 75-81.

    [10]

    魏合理, 陈秀红, 詹杰, 等.红外辐射测量的大气修正[J].大气与环境光学学报, 2007, 2(6): 472-478. https://www.wenkuxiazai.com/doc/0f2f8621f111f18583d05aa9.html

    Wei Heli, Chen Xiuhong, Zhan Jie, et al. Atmospheric correction in the measurement of infrared radiance[J]. Journal of Atmosphere and Environmental Optics, 2007, 2(6): 472-478. https://www.wenkuxiazai.com/doc/0f2f8621f111f18583d05aa9.html

    [11]

    Engel M Y, Balfour L S. Quantitative evaluation of errors in remote measurements using a Thermal Image[J]. Proceedings of SPIE, 1991, 1442: 298-307. doi: 10.1117/12.49072

    [12]

    曹立华, 杨词银, 万春明.基于标校的双波段比色测温法[J].仪器仪表学报, 2012, 33(8): 1882-1888. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqyb201208030

    Cao Lihua, Yang Ciyin, Wan Chunming. Correction-based dual-waveband color comparison thermometric method[J]. Chinese Journal of Scientific Instrument, 2012, 33(8): 1882-1888. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqyb201208030

    [13]

    李云红, 王瑞华, 李禹萱.双波段比色测温技术及实验测试[J].激光与红外, 2013, 43(1): 71-75. https://www.wenkuxiazai.com/doc/8a7fc940a8114431b90dd8cb.html

    Li Yunhong, Wang Ruihua, Li Yuxuan. Dual waveband colorimetric temperature measurement technology and Experiment[J]. Laser & Infrared, 2013, 43(1): 71-75. https://www.wenkuxiazai.com/doc/8a7fc940a8114431b90dd8cb.html

  • 加载中

(8)

(8)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2016-10-17
修回日期:  2016-12-31
刊出日期:  2017-04-15

目录

/

返回文章
返回