Risley光栅跟瞄系统指向误差分析

董云冲,李小明,陈希来,等. Risley光栅跟瞄系统指向误差分析[J]. 光电工程,2025,52(3): 240241. doi: 10.12086/oee.2025.240241
引用本文: 董云冲,李小明,陈希来,等. Risley光栅跟瞄系统指向误差分析[J]. 光电工程,2025,52(3): 240241. doi: 10.12086/oee.2025.240241
Dong Y C, Li X M, Chen X L, et al. Analysis of pointing error of Risley grating tracking system[J]. Opto-Electron Eng, 2025, 52(3): 240241. doi: 10.12086/oee.2025.240241
Citation: Dong Y C, Li X M, Chen X L, et al. Analysis of pointing error of Risley grating tracking system[J]. Opto-Electron Eng, 2025, 52(3): 240241. doi: 10.12086/oee.2025.240241

Risley光栅跟瞄系统指向误差分析

详细信息

Analysis of pointing error of Risley grating tracking system

More Information
  • Risley光栅跟瞄系统主要由两片旋转的偏振光栅组成,光源经过偏振光栅衍射后实现在圆锥形范围内的光束指向,进而对目标进行捕获、跟踪。而指向精度作为Risley光栅跟瞄系统的重要指标,不仅受伺服与光学系统影响,还受Risley光栅跟瞄系统中双光栅转台的天线安装位置精度以及轴系装配误差等系统误差影响。为此,本文主要对Risley光栅跟瞄系统中的各系统误差源及其造成的指向误差进行分析,首先建立系统误差数理模型并利用ZEMAX对数理模型进行验证,随后利用MATLAB分析各系统误差源对Risley光栅跟瞄系统指向误差的影响,最后根据分析结果及指标要求对某双光栅跟瞄系统误差源进行误差分配,指导双光栅转台的设计、装调。对双光栅转台指向误差进行实验测试,经多次实验测试后得到双光栅转台实际最大指向误差δe=7.2″,满足双光栅转台指向误差设计指标10″。

  • Overview: With the continuous progress of science and technology, laser application technologies such as space laser communication and photoelectric tracking continue to develop, and the requirements for tracking systems are becoming higher and higher. The Risley grating tracking system is small in size and light in weight, which can be used in some specific environments. The system is mainly composed of two rotating polarization gratings, through the diffraction of polarization gratings to achieve the direction of the beam in the conical range, so as to achieve the acquisition and tracking of the target. As an important index of the Risley grating tracking system, pointing accuracy is not only related to the servo system and optical system but also affected by system errors in the Risley grating turntable. Therefore, in this paper, systematic error sources in the Risley grating tracking system are classified and analyzed, and a systematic error source model is established, which mainly includes light source tilt error, grating axis tilt error, grating tilt error, and grating angle error.

    The polar angle and azimuth angle of the outgoing beam under the error model are obtained by introducing the error angle, and verified by ZEMAX optical software. The results show that the maximum difference between the polar angle and the azimuth angle is 0.00076 "and 0.0013", respectively. After verification, MATLAB software was used to simulate the influence of each error source on the pointing error of the Risley grating tracking system. When each system error was set to 0.1°, the influence of light source tilt error and grating angle error on pointing error was 0.1035° and 0.01305°, respectively. The grating axis tilt error and the grating tilt error are both 3.168". Finally, according to the sensitivity of each error source to the pointing error, the four errors are assigned and corresponding to the Risley grating turntable, which guides the design, processing, and installation of the turntable. After the Risley grating turntable is finished, the pointing accuracy of the Risley grating turntable is verified by experiments. Multiple experimental results show that the actual maximum pointing error of the Risley grating turntable δe=7.2", which meets the design index of 10".

  • 加载中
  • 图 1  Risley光栅跟瞄系统结构原理图。(a)结构原理;(b)衍射角度

    Figure 1.  Schematic diagram of the Risley grating tracking system. (a) Structure principle; (b) Diffraction angle

    图 2  系统主要误差源

    Figure 2.  Main error sources of the system

    图 3  Risley光栅跟瞄系统误差模型

    Figure 3.  Risley grating tracking system error model

    图 4  ZEMAX误差验证模型与坐标系示意图

    Figure 4.  ZEMAX error verification model and coordinate system diagram

    图 5  衍射角θ1与方位角φ1的仿真对比。(a)衍射角θ1对比;(b)方位角φ1对比

    Figure 5.  Simulation comparison between polar angle θ1 and azimuth angle φ1. (a) Polar angle θ1 comparison; (b) Azimuth angle φ1 comparison

    图 6  衍射角θ2′ 与方位角φ2′ 的仿真对比。(a)衍射角θ2′ 对比;(b)方位角φ2′ 对比

    Figure 6.  Simulation comparison between polar angle θ2′ and azimuth angle φ2′. (a) Polar angle θ2′ comparison; (b) Azimuth angle φ2′ comparison

    图 7  光栅轴与光栅倾斜时的仿真对比。(a)衍射角θ3对比;(b)方位角φ3对比;(c)最大衍射角差值变化;(d) 最大方位角差值变化

    Figure 7.  Simulation comparison between grating axis and grating tilt. (a) Comparison of polar angle θ3 ; (b) Comparison of azimuth angle φ3 ;(c) Maximum polar angle difference change; (d) Maximum azimuth angle difference change

    图 8  光源倾斜误差的倾斜方向

    Figure 8.  Tilt direction of the light source tilt error

    图 9  光源倾斜误差造成的指向误差。(a) HL=0.1°时指向误差; (b) VL=0.1°时指向误差;(c)最大指向误差随γL的变化; (d)最大指向误差随光源倾斜误差的变化

    Figure 9.  Pointing error caused by the light source tilt error. (a) Pointing error at HL=0.1°; (b) Pointing error at VL=0.1°; (c) Maximum pointing error varies with γL; (d) Maximum pointing error varies with the tilt error of the light source

    图 10  光栅轴倾斜误差造成的指向误差。(a) HR1=0.1°时指向误差;(b) VR1=0.1°时指向误差;(c) HR2=0.1°时指向误差; (d) VR2=0.1°时指向误差;(e)最大指向误差随γR1的变化;(f) 最大指向误差随γR2的变化;(g) 最大指向误差随光栅轴倾斜误差的变化

    Figure 10.  Pointing error caused by grating axis tilt error. (a) Pointing error at HR1=0.1°; (b) Pointing error at VR1=0.1°; (c) Pointing error at HR2=0.1°; (d) Pointing error at VR2=0.1°; (e) Maximum pointing error varies with γR1; (f) Maximum pointing error varies with γR2; (g) Change of the maximum pointing error with the tilt error of the grating axis

    图 11  光栅转角误差造成的指向误差。(a) δψ1=0.1°时指向误差;(b) δψ2=0.1°时指向误差;(c) 最大指向误差随光栅转角误差的变化

    Figure 11.  Pointing error caused by grating angle error. (a) Pointing error at δψ1=0.1°; (b) Pointing error at δψ2=0.1°; (c) Change of the maximum pointing error with the angle error of the grating

    图 12  双光栅转台实物与装调测试示意图。(a)双光栅转台结构;(b)双光栅转台实物;(c)装调测试现场

    Figure 12.  Schematic diagram of double grating turntable and installation test. (a) Double grating turntable; (b) Double grating turntable installation; (c) Test site installation test site

    图 13  实验测试流程

    Figure 13.  Experimental test process

    图 14  双光栅转台指向误差实验现场

    Figure 14.  Double grating turntable pointing error test site

    图 15  指向误差实验数据

    Figure 15.  Experimental data of pointing error

    表 1  仿真使用的系统参数

    Table 1.  System parameters used in the simulation

    System parameter Numerical value
    Grating period/μm 8.22
    Incident wavelength/μm 1.064
    Diffraction order ±1
    下载: 导出CSV

    表 2  各误差源引起指向误差大小

    Table 2.  Size of the pointing error under each error source

    Error source (0.1°)ei/(°)
    Light tilt error0.10350
    Grating axis 1 tilt error0.00088
    Grating axis 2 tilt error0.00250
    Grating 1 tilt error0.00088
    Grating 2 tilt error0.00250
    Grating 1 angle error0.01300
    Grating 2 angle error0.01300
    下载: 导出CSV

    表 3  误差源分配

    Table 3.  Error source allocation

    Allocation of pointing errors The size of the allocation pointing error/(″) Corresponding source of error The corresponding error source assignment value/(″)
    Pointing error caused by the tilt of light δL 9.83841 Light tilt error YL 9.51
    Pointing error caused by the tilt of grating axis 1 δR1 0.08365 Grating axis 1 tilt error YR1 9.55
    Pointing error caused by the tilt of grating axis 2 δR1 0.23765 Grating axis 2 tilt error YR2 9.52
    Pointing error caused by the tilt of grating 1 δP1 0.08365 Grating 1 tilt error YP1 9.55
    Pointing error caused by the tilt of grating 2 δP2 0.23765 Grating 2 tilt error YP2 9.52
    Pointing error caused by the error of grating angle δQ1 1.24050 Grating 1 angle error YQ1 9.54
    Pointing error caused by the error of grating angle δQ2 1.24050 Grating 2 angle error YQ2 9.54
    下载: 导出CSV

    表 4  系统误差源对应的双光栅转台误差

    Table 4.  Error of double grating turntable corresponding to the system error source

    Systematic error source The corresponding double grating turntable error The design error of the corresponding
    double grating turntable/(″)
    Light tilt errorAntenna coaxial error8
    Grating axis tilt errorDeflection error of grating axis (grating axis 1)
    Deflection error of grating axis+ Parallelism of the two axes (grating axis 2)
    5
    5+4
    Grating tilt errorGrating 1 installation error
    Grating 2 installation error
    7
    7
    Grating angle errorEncoder error3
    下载: 导出CSV

    表 5  双光栅转台误差检测

    Table 5.  Error detection of double grating turntable

    Double grating turntable error Design value/(″) Measured value/(″)
    Antenna coaxial error≤86.53
    Deflection error of grating axis≤5 (grating axis 1)
    ≤5 (grating axis 2)
    4.20
    4.05
    Parallelism of the two axes≤43.29
    Grating installation error≤7 (grating 1)
    ≤7 (grating 2)
    5.30
    6.00
    Encoder error≤32.50
    下载: 导出CSV
  • [1]

    姜会林, 佟首峰. 空间激光通信技术与系统[M]. 北京: 国防工业出版社, 2010.

    Jiang H L, Tong S F. The Technologies and Systems of Space Laser Communication[M]. Beijing: National Defense Industry Press, 2010.

    [2]

    谢木军, 马佳光, 傅承毓, 等. 空间光通信中的精密跟踪瞄准技术[J]. 光电工程, 2000, 27(1): 13−16. doi: 10.3969/j.issn.1003-501X.2000.01.003

    Xie M J, Ma J G, Fu C Y, et al. Precision tracking and pointing technologies in space optical communication[J]. Opto-Electron Eng, 2000, 27(1): 13−16. doi: 10.3969/j.issn.1003-501X.2000.01.003

    [3]

    Schwarze C R, Vaillancourt R, Carlson D, et al. Risley-prism based compact laser beam steering for IRCM, laser communications, and laser radar[J]. Critical Technology, 2005, 9: 1−9.

    [4]

    Hakun C, Budinoff J, Brown G, et al. A boresight adjustment mechanism for use on laser altimeters[EB/OL]. [2023-03-01]. https://esmats.eu/amspapers/pastpapers/pdfs/2004/hakun.pdf.

    [5]

    余辉龙, 鲍智康, 王璇, 等. XY-2号卫星激光通信载荷PAT在轨测试[J]. 红外与激光工程, 2021, 50(5): 20200327. doi: 10.3788/IRLA20200327

    Yu H L, Bao Z K, Wang X, et al. XY-2 satellite laser communication equipment PAT test in orbit[J]. Infrared Laser Eng, 2021, 50(5): 20200327. doi: 10.3788/IRLA20200327

    [6]

    宋一诺. 基于旋转双棱镜的激光通信粗指向机构关键技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2023. https://doi.org/10.27522/d.cnki.gkcgs.2023.000004.

    Song Y N. Key technology research of coarse pointing mechanism for laser communication based on Risley prisms[D]. Changchun: Changchun Institute of Optics, Fine Mechanicsand Physics, Chinese Academy of Sciences, 2023. https://doi.org/10.27522/d.cnki.gkcgs.2023.000004.

    [7]

    Wang J, Gao L, Jiang L, et al. Establishment and verification of formulas of target tracking based on dual liquid crystal polarization gratings[J]. Opt Express, 2022, 30(24): 43062−43077. doi: 10.1364/OE.473947

    [8]

    Oh C, Kim J, Muth J F, et al. A new beam steering concept: Risley gratings[J]. Proc SPIE, 2009, 7466: 74660J. doi: 10.1117/12.828005

    [9]

    Kim J, Miskiewicz M N, Serati S, et al. Nonmechanical laser beam steering based on polymer polarization gratings: design optimization and demonstration[J]. J Lightw Technol, 2015, 33(10): 2068−2077. doi: 10.1109/JLT.2015.2392694

    [10]

    Zhou Y, Fan D P, Fan S X, et al. Laser scanning by rotating polarization gratings[J]. Appl Opt, 2016, 55(19): 5149−5157. doi: 10.1364/AO.55.005149

    [11]

    李小明, 朱国帅, 郭名航, 等. 基于光学自准直的旋转轴平行度测量与不确定度分析[J]. 红外与激光工程, 2023, 52(5): 20220794. doi: 10.3788/IRLA20220794

    Li X M, Zhu G S, Guo M H, et al. Coaxiality measurement and uncertainty analysis of rotating shafts based on autocollimation[J]. Infrared Laser Eng, 2023, 52(5): 20220794. doi: 10.3788/IRLA20220794

    [12]

    符红, 吴琼, 林斌, 等. 基于双光栅的平行度检测[J]. 光电工程, 2012, 39(7): 61−66. doi: 10.3969/j.issn.1003-501X.2012.07.010

    Fu H, Wu Q, Lin B, et al. The measurement of parallelism based on diffraction grating[J]. Opto-Electron Eng, 2012, 39(7): 61−66. doi: 10.3969/j.issn.1003-501X.2012.07.010

    [13]

    佀明华, 王伟明, 张勇, 等. 基于光电伺服平台的动态角度测量方法研究[J]. 光电工程, 2019, 46(10): 180445. doi: 10.12086/oee.2019.180445

    Si M H, Wang W M, Zhang Y, et al. Research on dynamic angle measurement method based on electro-optical servo platform[J]. Opto-Electron Eng, 2019, 46(10): 180445. doi: 10.12086/oee.2019.180445

    [14]

    奚玉鼎, 于涌, 丁媛媛, 等. 一种快速搜索空中低慢小目标的光电系统[J]. 光电工程, 2018, 45(4): 170654. doi: 10.12086/oee.2018.170654

    Xi Y D, Yu Y, Ding Y Y, et al. An optoelectronic system for fast search of low slow small target in the air[J]. Opto-Electron Eng, 2018, 45(4): 170654. doi: 10.12086/oee.2018.170654

  • 加载中

(16)

(5)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2024-10-15
修回日期:  2025-01-09
录用日期:  2025-01-09
刊出日期:  2025-03-28

目录

/

返回文章
返回